17 resultados para Variable Structure Control


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recA gene is essential for SOS response induction, for inducible DNA repair and for homologous recombination in E. coli. The level of recA expression is significant for these functions. A basal level of about 1000 molecules of RecA protein is sufficient for homologous recombination of the cell and is essential for the induction of the SOS response. Based on previous observations, two models regarding the origin of the basal RecA protein were postulated. One was that it comes from the leaky expression of the LexA repressed promoter. The other was that it is from another weak but constitutive promoter. The first part of this thesis is to study these possibilities. An $\Omega$ cartridge containing the transcription terminator of gene 32 of T4 phage was exploited to define a second promoter for recA expression. Insertion of this $\Omega$ cartridge downstream of the known promoter gave rise to only minor expression. Purification and N-terminus sequencing of the RecA protein from the insertion mutant did not support the existence of a second promoter. To determine whether the basal RecA is due to the leaky expression of the known LexA repressed promoter, recA expression of a SOS induction minus strain (basal level expression of recA) was compared with that of a recA promoter down mutation recA1270. The result demonstrated that there is leaky expression from the LexA repressed promoter. All the evidence supports the conclusion that there is only one promoter for both basal and induced expression levels of recA.^ Several translation enhancer sequences which are complementary to different regions of the 16S rRNA were found to exist in recA mRNA. The leader sequence of recA mRNA is highly complementary to a region of the 16S rRNA. Thus it appeared that recA expression could be regulated at post-transcriptional levels. The second part of this thesis is focused on the study of the post-transcriptional control of recA expression. Deletions of the complementary regions were created to examine their effect on recA expression. The results indicated that all of the complementary regions were important for the normal expression of recA and their effects were post-transcriptional. RNA secondary structures of wild type recA mRNA was inspected and a stem-loop structure was revealed. The expression down mutations at codon 10 and 11 were found to stabilize this structure. The conclusions of the second part of this thesis are that there is post-transcriptional control for recA expression and the leader sequence of recA mRNA plays more than one role in the control of recA expression. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Like other simple retroviruses the murine sarcoma virus ts110 (MuSVts110) displays an inefficient mode of genome splicing. But, unlike the splicing phenotypic of other retroviruses, the splicing event effected upon the transcript of MuSVts110 is temperature sensitive. Previous work in this laboratory has established that the conditionally defective nature of MuSVts110 RNA splicing is mediated in cis by features in the viral transcript. Here we show that the 5$\sp\prime$ splice site of the MuSVts110 transcript acts as a point of control of the overall splicing efficiency at both permissive and nonpermissive temperatures for splicing. We strengthened and simultaneously weakened the nucleotide structure of the 5$\sp\prime$ splice site in an attempt to elucidate the differential effects each of the two known critical splicing components which interact with the 5$\sp\prime$ splice site have on the overall efficiency of intron excision. We found that a transversion of the sixth nucleotide, resulting in the formation of a near-consensus 5$\sp\prime$ splice site, dramatically increased the overall efficiency of MuSVts110 RNA splicing and abrogated the thermosensitive nature of this splicing event. Various secondary mutations within this original transversion mutant, designed to selectively decrease specific splicing component interactions, lead to recovery of inefficient and thermosensitive splicing. We have further shown that a sequence of 415 nucleotides lying in the downstream exon of the viral RNA and hypothesized to act as an element in the temperature-dependent inhibition of splicing displays a functional redundancy throughout its length; loss and/or replacement of any one sequence of 100 nucleotides within this sequence does not, with one exception detailed below, diminish the degree to which MuSVts110 RNA is inhibited to splice at the restrictive temperature. One specific deletion, though, fortuitously juxtaposed and activated cryptic consensus splicing signals for the excision of a cryptic intron within the downstream exon and markedly potentiated--across a newly defined cryptic exon--the splicing event effected upon the upstream, native intron. We have exploited this mutant of MuSVts110 to further an understanding of the process of exon definition and intron definition and show that the polypyrimidine tract and consensus 3$\sp\prime$ splice site, as well as the 5$\sp\prime$ splice site, within the intron at the 3$\sp\prime$ flank of the defined exon are required for the exon's definition; implying that definition of the downstream intron is required for the in vivo definition of the proximal, upstream exon. Finally; we have shown, through the construction of heterologous mutants of MuSVts110 employing a foreign 3$\sp\prime$ end-forming sequence, that efficiency of transcript splicing can be increased--to a degree which abrogates its thermosensitive nature--in direct proportion to increasing proximity of the 3$\sp\prime$ end-forming signal to the terminal 3$\sp\prime$ splice site. ^