27 resultados para Type I Collagen Promoter


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metastasis is the major cause of death in cancer patients. Since many cancers show organ-preference of metastasis, elucidation of the underlying mechanisms of metastasis will benefit diagnosis or treatment of metastatic diseases. Adhesion mechanisms are thought to be involved in organ-preference of metastasis, because metastatic cells show organ preference in adhering to organ-derived microvascular endothelial cells. The adhesion molecules in this process remain largely unidentified. I have examined a series of murine RAW117 large-cell lymphoma cells variants selected in vivo for liver-colonizing properties ($\rm{H10{>>}L17>P}$). The highly liver-metastatic H10 cells were found to differentially express much higher levels of integrin $\alpha\rm\sb{v}\beta\sb3$ than L17 or P cells. H10 cells also adhered at higher rates to vitronectin and fibronectin than to fibrinogen, fibrin, laminin and type I collagen, and adhered at significantly higher rates to (GRGDS)$\sb4$ than to monomeric RGD-peptides. In contrast, P and L17 cells did not adhere well to the above substrates. H10 cells also spread well on vitronectin and migrated toward vitronectin concentration gradients. Pretreament of H10 cells with anti-$\beta\sb3$ monoclonal antibodies resulted in significant decreases in adhesion of H10 cells to vitronectin and immobilized (GRGDS)$\sb4$, and reduced the formation of experimental liver metastases in syngeneic Balb/c mice.^ Adhesion of RAW117 cells under hydrodynamic shear stresses was also studied because tumor cell adhesion occurs under fluid shear stresses in target organ microvessels. Similar to their properties found with static adhesion assays, H10 cells stabilized their hydrodynamic adhesion to vitronectin, fibronectin and (GRGDS)$\sb4$ much more quickly than P or L17 cells. Unlike their static adhesion properties, RAW117 cells showed differential adhesion stabilization to liver-sinusoidal endothelial cell-derived extracellular matrix ($\rm{H10{>>}L17>P}$). Although not supporting static adhesion of RAW117 cells, monomeric RGD-peptides mediated adhesion stabilization of H10 cells but not L17 or P cells. Integrin $\rm\alpha\sb{v}\beta\sb3$ was found to be involved in stabilizing H10 cell adhesion to vitronectin, (GRGDS)$\sb4$, monomeric RGD-peptide R1, and liver sinusoidal endothelial cell-derived extracellular matrix.^ This study is the first to provide evidence that integrin $\rm\alpha\sb{v}\beta\sb3$ is differentially expressed in liver-metastatic lymphoma cells and involved in differential adhesion of these cells. The results indicate that strong static adhesion and especially the unique hydrodynamic adhesion of RAW117 cells to the RGD-containing substrates correlate with liver-metastatic potentials. Thus, integrin $\rm\alpha\sb{v}\beta\sb3$ may play an important role in liver-preferential metastasis of RAW117 large-cell lymphoma cells. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many eukaryotic promoters contain a CCAAT element at a site close ($-$80 to $-$120) to the transcription initiation site. CBF (CCAAT Binding Factor), also called NF-Y and CP1, was initially identified as a transcription factor binding to such sites in the promoters of the Type I collagen, albumin and MHC class II genes. CBF is a heteromeric transcription factor and purification and cloning of two of the subunits, CBF-A and CBF-B revealed that it was evolutionarily conserved with striking sequence identities with the yeast polypeptides HAP3 and HAP2, which are components of a CCAAT binding factor in yeast. Recombinant CBF-A and CBF-B however failed to bind to DNA containing CCAAT sequences. Biochemical experiments led to the identification of a third subunit, CBF-C which co-purified with CBF-A and complemented the DNA binding of recombinant CBF-A and CBF-B. We have recently isolated CBF-C cDNAs and have shown that bacterially expressed purified CBF-C binds to CCAAT containing DNA in the presence of recombinant CBF-A and CBF-B. Our experiments also show that a single molecule each of all the three subunits are present in the protein-DNA complex. Interestingly, CBF-C is also evolutionarily conserved and the conserved domain between CBF-C and its yeast homolog HAP5 is sufficient for CBF-C activity. Using GST-pulldown experiments we have demonstrated the existence of protein-protein interaction between CBF-A and CBF-C in the absence of CBF-B and DNA. CBF-B on other hand, requires both CBF-A and CBF-C to form a ternary complex which then binds to DNA. Mutational studies of CBF-A have revealed different domains of the protein which are involved in CBF-C interaction and CBF-B interaction. In addition, CBF-A harbors a domain which is involved in DNA recognition along with CBF-B. Dominant negative analogs of CBF-A have also substantiated our initial observation of assembly of CBF subunits. Our studies define a novel DNA binding structure of heterotrimeric CBF, where the three subunits of CBF follow a particular pathway of assembly of subunits that leads to CBF binding to DNA and activating transcription. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Respiratory diseases are a major cause of mortality and morbidity worldwide. Current treatments offer no prospect of cure or disease reversal. Transplantation of pulmonary progenitor cells derived from human embryonic stem cells (hESCs) may provide a novel approach to regenerate endogenous lung cells destroyed by injury and disease. Here, we examine the therapeutic potential of alveolar type II epithelial cells derived from hESCs (hES-ATIICs) in a mouse model of acute lung injury. When transplanted into lungs of mice subjected to bleomycin (BLM)-induced acute lung injury, hES-ATIICs behaved as normal primary ATIICs, differentiating into cells expressing phenotypic markers of alveolar type I epithelial cells. Without experiencing tumorigenic side effects, lung injury was abrogated in mice transplanted with hES-ATIICs, demonstrated by recovery of body weight and arterial blood oxygen saturation, decreased collagen deposition, and increased survival. Therefore, transplantation of hES-ATIICs shows promise as an effective therapeutic to treat acute lung injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Attention has recently been drawn to Enterococcus faecium because of an increasing number of nosocomial infections caused by this species and its resistance to multiple antibacterial agents. However, relatively little is known about the pathogenic determinants of this organism. We have previously identified a cell-wall-anchored collagen adhesin, Acm, produced by some isolates of E. faecium, and a secreted antigen, SagA, exhibiting broad-spectrum binding to extracellular matrix proteins. Here, we analysed the draft genome of strain TX0016 for potential microbial surface components recognizing adhesive matrix molecules (MSCRAMMs). Genome-based bioinformatics identified 22 predicted cell-wall-anchored E. faecium surface proteins (Fms), of which 15 (including Acm) had characteristics typical of MSCRAMMs, including predicted folding into a modular architecture with multiple immunoglobulin-like domains. Functional characterization of one [Fms10; redesignated second collagen adhesin of E. faecium (Scm)] revealed that recombinant Scm(65) (A- and B-domains) and Scm(36) (A-domain) bound to collagen type V efficiently in a concentration-dependent manner, bound considerably less to collagen type I and fibrinogen, and differed from Acm in their binding specificities to collagen types IV and V. Results from far-UV circular dichroism measurements of recombinant Scm(36) and of Acm(37) indicated that these proteins were rich in beta-sheets, supporting our folding predictions. Whole-cell ELISA and FACS analyses unambiguously demonstrated surface expression of Scm in most E. faecium isolates. Strikingly, 11 of the 15 predicted MSCRAMMs clustered in four loci, each with a class C sortase gene; nine of these showed similarity to Enterococcus faecalis Ebp pilus subunits and also contained motifs essential for pilus assembly. Antibodies against one of the predicted major pilus proteins, Fms9 (redesignated EbpC(fm)), detected a 'ladder' pattern of high-molecular-mass protein bands in a Western blot analysis of cell surface extracts from E. faecium, suggesting that EbpC(fm) is polymerized into a pilus structure. Further analysis of the transcripts of the corresponding gene cluster indicated that fms1 (ebpA(fm)), fms5 (ebpB(fm)) and ebpC(fm) are co-transcribed, a result consistent with those for pilus-encoding gene clusters of other Gram-positive bacteria. All 15 genes occurred frequently in 30 clinically derived diverse E. faecium isolates tested. The common occurrence of MSCRAMM- and pilus-encoding genes and the presence of a second collagen-binding protein may have important implications for our understanding of this emerging pathogen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alveolar epithelial type II (ATII) cells are small, cuboidal cells that constitute approximately 60% of the pulmonary alveolar epithelium. These cells are crucial for repair of the injured alveolus by differentiating into alveolar epithelial type I cells. ATII cells derived from human ES (hES) cells are a promising source of cells that could be used therapeutically to treat distal lung diseases. We have developed a reliable transfection and culture procedure, which facilitates, via genetic selection, the differentiation of hES cells into an essentially pure (>99%) population of ATII cells (hES-ATII). Purity, as well as biological features and morphological characteristics of normal ATII cells, was demonstrated for the hES-ATII cells, including lamellar body formation, expression of surfactant proteins A, B, and C, alpha-1-antitrypsin, and the cystic fibrosis transmembrane conductance receptor, as well as the synthesis and secretion of complement proteins C3 and C5. Collectively, these data document the successful generation of a pure population of ATII cells derived from hES cells, providing a practical source of ATII cells to explore in disease models their potential in the regeneration and repair of the injured alveolus and in the therapeutic treatment of genetic diseases affecting the lung.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Type II collagen is a major chondrocyte-specific component of the cartilage extracellular matrix and it represents a typical differentiation marker of mature chondrocytes. In order to delineate cis-acting elements of the mouse pro$\alpha1$(II) collagen gene that control chondrocyte-specific expression in intact mouse embryos, we generated transgenic mice harboring chimeric constructions in which varying lengths of the promoter and intron 1 sequences were linked to a $\beta$-galactosidase reporter gene. A construction containing a 3000-bp promoter and a 3020-bp intron 1 fragment directed high levels of $\beta$-galactosidase expression specifically to chondrocytes. Successive deletions of intron 1 delineated a 48-bp fragment which targeted $\beta$-galactosidase expression to chondrocytes with the same specificity as the larger intron 1 fragment. When the Col2a1 promoter was replaced with a minimal $\beta$-globin promoter, the 48-bp intron 1 sequence was still able to target expression of the transgene to chondrocytes, specifically. Therefore a 48-bp intron 1 DNA segment of the mouse Col2a1 gene contains the necessary information to confer high-level, temporally correct, chondrocyte expression to a reporter gene in intact mouse embryos and that Col2a1 promoter sequences are dispensable for chondrocyte expression. Nuclear proteins present selectively in mouse primary chondrocytes and rat chondrosarcoma cells bind to the three putative HMG (High-Mobility-Group) domain protein binding sites in this 48-bp sequence and the chondrocyte-specific proteins likely bind the DNA through minor groove. Together, my results indicate that a 48-bp sequence in Col2a1 intron 1 controls chondrocyte-specific expression in vivo and suggest that chondrocytes contain specific nuclear proteins involved in enhancer activity. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enterococcus faecalis, the third most frequent cause of bacterial endocarditis, appears to be equipped with diverse surface-associated proteins showing structural-fold similarity to the immunoglobulin-fold family of staphylococcal adhesins. Among the putative E. faecalis surface proteins, the previously characterized adhesin Ace, which shows specific binding to collagen and laminin, was detectable in surface protein preparations only after growth at 46 degrees C, mirroring the finding that adherence was observed in 46 degrees C, but not 37 degrees C, grown E. faecalis cultures. To elucidate the influence of different growth and host parameters on ace expression, we investigated ace expression using E. faecalis OG1RF grown in routine laboratory media (brain heart infusion) and found that ace mRNA levels were low in all growth phases. However, quantitative reverse transcription-PCR showed 18-fold-higher ace mRNA amounts in cells grown in the presence of collagen type IV compared to the controls. Similarly, a marked increase was observed when cells were either grown in the presence of collagen type I or serum but not in the presence of fibrinogen or bovine serum albumin. The production of Ace after growth in the presence of collagen type IV was demonstrated by immunofluorescence microscopy, mirroring the increased ace mRNA levels. Furthermore, increased Ace expression correlated with increased collagen and laminin adhesion. Collagen-induced Ace expression was also seen in three of three other E. faecalis strains of diverse origins tested, and thus it appears to be a common phenomenon. The observation of host matrix signal-induced adherence of E. faecalis may have important implications on our understanding of this opportunistic pathogen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: SPARC is a matricellular protein, which, along with other extracellular matrix components including collagens, is commonly over-expressed in fibrotic diseases. The purpose of this study was to examine whether inhibition of SPARC can regulate collagen expression in vitro and in vivo, and subsequently attenuate fibrotic stimulation by bleomycin in mouse skin and lungs. METHODS: In in vitro studies, skin fibroblasts obtained from a Tgfbr1 knock-in mouse (TBR1CA; Cre-ER) were transfected with SPARC siRNA. Gene and protein expressions of the Col1a2 and the Ctgf were examined by real-time RT-PCR and Western blotting, respectively. In in vivo studies, C57BL/6 mice were induced for skin and lung fibrosis by bleomycin and followed by SPARC siRNA treatment through subcutaneous injection and intratracheal instillation, respectively. The pathological changes of skin and lungs were assessed by hematoxylin and eosin and Masson's trichrome stains. The expression changes of collagen in the tissues were assessed by real-time RT-PCR and non-crosslinked fibrillar collagen content assays. RESULTS: SPARC siRNA significantly reduced gene and protein expression of collagen type 1 in fibroblasts obtained from the TBR1CA; Cre-ER mouse that was induced for constitutively active TGF-beta receptor I. Skin and lung fibrosis induced by bleomycin was markedly reduced by treatment with SPARC siRNA. The anti-fibrotic effect of SPARC siRNA in vivo was accompanied by an inhibition of Ctgf expression in these same tissues. CONCLUSIONS: Specific inhibition of SPARC effectively reduced fibrotic changes in vitro and in vivo. SPARC inhibition may represent a potential therapeutic approach to fibrotic diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hypothesis to be tested is that there are two distinct types of chronic responses in irradiated normal tissues, each resulting from damage to different cell populations in the tissue. The first is a sequala of chronic epithelial depletion in which the tissue's integrity cannot be maintained, i.e. a "consequential" chronic response. The other response is due to cell loss in the connective tissue and/or vascular stroma, i.e. a "primary" chronic response. The purpose of this study was to test the hypothesis in the murine colon by first, establishing a model of each chronic response and then, by determining whether the responses differed in timing of expression, histology, and expression of specific collagen types. The model of late damage used was colonic obstructions/strictures induced by a single dose of 27 Gy ("consequential" response) and two equal doses of 14.75 Gy (t = 10 days) ("primary" response). "Consequential" lesions appeared as early as 5 weeks after 27 Gy and were characterized by a deep mucosal ulceration and a thickened fibrotic serosa containing excessive accumulations of collagen types I and III. Both types were commingled in the scar at the base of the ulcer. Fibroblasts were synthesizing pro-collagen types I and III mRNA 10 weeks prior to measurable increases in collagen. A significant decrease in the ratio of collagen types I:III was associated with the "consequential" response at 4-5 months post-irradiation. The "primary" response, on the other hand, did not appear until 40 weeks after the split dose even though the total dose delivered was approximately the same as that for the "consequential" response. The "primary" response was characterized with an intact mucosa and a thickened fibrotic submucosa which contained excessive amounts of only collagen type I. An increased number of fibroblasts were synthesizing pro-collagen type I mRNA nearly 25 weeks before collagen type I levels were increased. The "primary" response lesion had a significantly elevated collagen type I:III ratio at 10-13 months post-irradiation. These data show a clear difference between the two chronic response and suggest that not all chronic responses share a common pathogenesis, but depend on the cell population in the tissue that is damaged. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A variety of human cancers overexpress the HER-2/neu proto-oncogene. Among patients with breast and ovarian cancers this HER-2/ neu overexpression indicates an unfavorable prognosis, with a shorter overall survival duration and a lower response rate to chemotherapeutic agents. Downregulation of HER-2/neu gene expression in cancer cells through attenuation of HER-2/neu promoter activity is, therefore, an attractive strategy for reversing the transformation phenotype and thus the chemoresistance induced by HER-2/neu overexpression. ^ A viral transcriptional regulator, the adenovirus type 5 E1A (early region 1A) that can repress the HER-2/neu promoter, had been identified in the laboratory of Dr. Mien-Chie Hung. Following the identification of the E1A gene, a series of studies revealed that repression of HER-2/neu by the E1A gene which can act therapeutically as a tumor suppressor gene for HER-2/ neu-overexpressing cancers. ^ The results of these preclinical studies became the basis for a phase I trial for E1A gene therapy among patients with HER-2/neu-overexpressing breast and ovarian cancer. In this dissertation, three primary questions concerned with new implications of E1A gene therapy are addressed: First, could E1A gene therapy be incorporated with conventional chemotherapy? Second, could the E1A gene be delivered systemically to exert an anti-tumor effect? And third, what is the activity of the E1A gene in low-HER-2/neu-expressing cancer cells? ^ With regard to the first question, the studies reported in this dissertation have shown that the sensitivity of HER-2/neu-overexpressing breast and ovarian cancer to paclitaxel is in fact enhanced by the downregulation of HER-2/neu overexpression by E1A. With regard to the second question, studies have shown that the E1A gene can exert anti-tumor activity by i.v. injection of the E1A gene complexed with the novel cationic liposome/protamine sulfate/DNA type I (LPDI). And with regard to the third question, the studies of low-HER-2/ neu-expressing breast and ovarian cancers reported here have shown that the E1A gene does in fact suppress metastatic capability. It did not, however, suppress the tumorigenicity. ^ Three conclusions can be drawn from the experimental findings reported in this dissertation. Combining paclitaxel with E1A gene therapy may expand the implications of the gene therapy in the future phase II clinical trial. Anti-tumor activity at a distant site may be achieved with the i.v. injection of the E1A gene. Lastly when administered therapeutically the anti-metastatic effect of the E1A gene in low-HER-2/neu-expressing breast cancer cells may prevent metastasis in primary breast cancer. (Abstract shortened by UMI.)^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Viral infection is known to play a role in type I diabetes, but there is a paucity of information on the role of viruses in type 2 diabetes. This research examined the seroprevalence of selected viruses in a group of predominantly Mexican-American patients with End Stage Renal Disease (ESRD). Using a case control design, patients with type 2 diabetes were compared with a group of non-diabetic controls. ^ One hundred and thirteen patients, 83 with type 2 diabetes and 30 controls without diabetes, underwent hemodialysis at the same chronic dialysis facility in San Antonio, Texas. AD subjects were tested for IgG, IgM, and neutralizing antibodies against Coxsackie B viruses (CBV), and IgG and IgM antibodies against cytomegalovirus (CMV) and parvovirus B19 (PVB19). Hepatitis B virus antigen (HBVAg), Hepatitis B virus antibody (HBVAb), Hepatitis C virus antibody (HCVAb), and Rubella (IgG) were also measured. A subset of 91 patients, 66 with diabetes and 25 controls, were tested bimonthly for six months. There was a significant difference (P = 0.04) in the seroprevalence of IgG antibodies to CMV between patients with type 2 diabetes (98%) and non-diabetic controls (87%) in the initial sample (OR = 6.2, 95% CI:1.1–36.0). A greater seroprevalence of CMV IgG antibodies was observed over the six month period among patients with type 2 diabetes (M) compared to controls (84%). This difference was also statistically (P < 0.03), with a greater odds ratio (OR = 12.4, 95% CI: 1.3–116.9), but with larger confidence interval related to the small number of subjects. However, when adjusted for age by logistic regression analysis there was no difference between the groups (OR = 1). ^ After one sample, there was a greater seroprevalence of HCVAb in the group without diabetes (28%), compared to those with type 2 diabetes (10%) (P = 0.04). This difference was no longer significant when adjusted for patient age. The prevalence of antibodies to PVB19, HBSAg, HBV, and Rubella was not significantly different in patients with type 2 diabetes and controls. There were significantly more vascular complications (P < 0.02) among patients with diabetes. ^ These results indicate that the significant associations observed in this population between viral infection with CMV, HCV, and type 2 diabetes are confounded by age. Accelerated atherosclerosis has been associated with age, diabetes, as well as CMV. Latent infection may be a factor that links these processes. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Class I MHC proteins have been shown to induce accelerated rejection or prolong survival of allografts in various experimental models. These immunological effects have been attributed to the highly polymorphic alpha helical regions of the extracellular portions of the class I MHC molecule. The present experiments were designed to elucidate the immunomodulatory effects of these polymorphic regions and delineate the mechanisms involved. Soluble allochimeric class I MHC proteins were produced by substituting the PVG class I MHC RT1.Ac amino acid residues within the a 1 helical region with those of the donor BN ( a 1hn-RT1.Ac), the a 2 helical region of BN ( a 2hn-RT1.Ac), and both the a 1 and a 2 helical regions (RT1.An). The class I MHC proteins were produced in an E. coli protein expression system. The a 2hn-RT1.Ac and RT1.An proteins, when administered subcutaneously into PVG hosts 7 days prior to transplantation, resulted in accelerated rejection of BN cardiac allografts. The a 1hn-RT1.Ac construct did not demonstrate such immunogenic effects. Intra-portal administration of a 1hn-RT1.Ac or RT1.An, in combination with perioperative CsA, induced tolerance to BN cardiac allografts. The a 1hn-RT1.Ac protein was able to induce tolerance in a larger majority of the PVG recipients and at a lower dose of protein when compared to the RT1.An protein. RT1.An administered orally to PVG recipients also induced long term survival of cardiac allografts. In vitro analysis revealed that lymphocytes from tolerant hosts were hyporesponsive to donor splenocytes, but responsive to 3rd party splenocytes. Evaluation of T cell cytokine expression patterns revealed that rejector PVG hosts displayed a Type I T-cell response when re-challenged with donor splenocytes, in contrast to tolerant animals that displayed a Type II T-cell response. FACS analysis of the T cells revealed that the ratio of CD4 to CD8 cells was 3:1 and was consistent in the groups tested suggesting a complex interaction between the subsets of T cells, yielding the observed results. Histologic analysis of the cardiac allografts revealed that tolerant PVG hosts maintained BN cardiac allografts without any evidence of acute or chronic rejection after 300 days post transplant. This body of work has demonstrated that the use of soluble donor/recipient allochimeric class I MHC proteins with a short peri-operative course of CsA resulted in transplant tolerance. This treatment regimen proffers a clinically relevant approach to the induction of tolerance across MHC barriers. ^