24 resultados para Tumor Necrosis Factor-alpha -- secretion


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bronchial epithelial cells play a pivotal role in airway inflammation, but little is known about posttranscriptional regulation of mediator gene expression during the inflammatory response in these cells. Here, we show that activation of human bronchial epithelial BEAS-2B cells by proinflammatory cytokines interleukin-4 (IL-4) and tumor necrosis factor alpha (TNF-alpha) leads to an increase in the mRNA stability of the key chemokines monocyte chemotactic protein 1 and IL-8, an elevation of the global translation rate, an increase in the levels of several proteins critical for translation, and a reduction of microRNA-mediated translational repression. Moreover, using the BEAS-2B cell system and a mouse model, we found that RNA processing bodies (P bodies), cytoplasmic domains linked to storage and/or degradation of translationally silenced mRNAs, are significantly reduced in activated bronchial epithelial cells, suggesting a physiological role for P bodies in airway inflammation. Our study reveals an orchestrated change among posttranscriptional mechanisms, which help sustain high levels of inflammatory mediator production in bronchial epithelium during the pathogenesis of inflammatory airway diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

After an inflammatory stimulus, lymphocyte migration into draining lymph nodes increases dramatically to facilitate the encounter of naive T cells with Ag-loaded dendritic cells. In this study, we show that CD73 (ecto-5'-nucleotidase) plays an important role in regulating this process. CD73 produces adenosine from AMP and is expressed on high endothelial venules (HEV) and subsets of lymphocytes. Cd73(-/-) mice have normal sized lymphoid organs in the steady state, but approximately 1.5-fold larger draining lymph nodes and 2.5-fold increased rates of L-selectin-dependent lymphocyte migration from the blood through HEV compared with wild-type mice 24 h after LPS administration. Migration rates of cd73(+/+) and cd73(-/-) lymphocytes into lymph nodes of wild-type mice are equal, suggesting that it is CD73 on HEV that regulates lymphocyte migration into draining lymph nodes. The A(2B) receptor is a likely target of CD73-generated adenosine, because it is the only adenosine receptor expressed on the HEV-like cell line KOP2.16 and it is up-regulated by TNF-alpha. Furthermore, increased lymphocyte migration into draining lymph nodes of cd73(-/-) mice is largely normalized by pretreatment with the selective A(2B) receptor agonist BAY 60-6583. Adenosine receptor signaling to restrict lymphocyte migration across HEV may be an important mechanism to control the magnitude of an inflammatory response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atherosclerosis is a chronic, complex arterial disease characterized by intimal lipid accumulation and inflammation. A unique lipid-binding molecule, namely cluster of differentiation 1d (CD1d), may impact atherosclerosis. Structurally, CD1d acts as a nonpolymorphic cell-surface receptor, resembling the major histocompatibility complex-I (MHC-I). While MHC-I restricts peptide antigen presentation to T cells, CD1d presents lipid antigens to T cells named CD1d-restrictedd T cells. Although increased expression of CD1d has been found in human plaques, the exact nature of CD1d-recognized lipids in atherosclerosis remains to be determined. Three groups of lipids may undergo oxidation in atherosclerosis producing atherogenic lipids: phospholipids, fatty acids, and cholesterol. The central hypothesis is that CD1d recognizes and present oxidative lipids to activate CD1d-restricted T cells, and trigger proinflammatory signal transduction In the first part of this study, oxidative phospholipids were identified and characterized as potential autoantigen for CD1d-restricted T cells. Derived from phospholipid 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine by oxidization, 1-palmitoyl-2-glutaryl-sn-glycero-3-phosphocholine (PGPC) is commonly found in atherosclerotic plaques. Upon stimulation with PGPC, spleen-derived CD1d-restricted T cells produced higher levels of cytokines and proliferated at higher rates than those without PGPC stimulation. CD1d deficiency compromised the PGPC-triggered T cell activation, suggesting that PGPC may function as a potentially novel autoantigen for T cells in atherosclerosis. In the second part of this study, CD1d-mediated proinflammatory signaling was evaluated in murine models. Enhanced CD1 expression occurred in spleens of db/db mice with hyperlipidemia. Tumor necrosis factor-alpha (TNF-α) was increased in db/db spleen, while TNF-α receptor expression augmented in the db/db murine heart, in comparison with those in normal mice. The nuclear factor-κ B (NF-κB) expression was enhanced in the db/db heart, whereas CD1d-null mice showed lower NF-κB, implying the involvement of CD1d in inflammation of the spleen and heart tissues in the mice with hyperlipidemia. The current study has identified PGPC as a novel lipid antigen recognized by CD1d-restricted T cells in atherosclerosis. The animal study has also provided evidence that CD1d regulates NF-κB-mediated proinflammatory signaling. Hence, CD1d-restricted T cell responses to autolipid antigen and mediated inflammatory signal may represent a new molecular pathway that triggers cardiovascular tissue injury in atherosclerosis and hyperlipidemia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An abundance of monocytes and macrophages (MO/MA) in the microenvironment of epithelial ovarian cancer (EOC) suggests possible dual roles for these cells. Certain MO/MA subpopulations may inhibit tumor growth by antibody-dependent cell-mediated cytotoxicity (ADCC), phagocytosis, or stimulation of adaptive immunity. In contrast, other MO/MA subpopulations may support tumor growth by immunosuppressive or pro-angiogenic cytokine production. A better understanding of the phenotype and activity of MO/MA in EOC should lead to greater insight into their role in the immunopathobiology of EOC and hence suggest targets for treatment. We have found differences in the proportions of MO/MA subpopulations in the peripheral blood and ascites of EOC patients compared to normal donors, and differences in MO/MA surface phenotype in the associated tumor environment compared to the systemic circulation. We also demonstrate that, following their activation in vitro, monocyte-derived macrophages (MDM) from the peripheral blood and ascites of EOC patients exhibit antitumor effector activities that are different from the behavior of normal donor cells. The phenotypic characteristics and antitumor activity of CD14+ MO/MA and an isolated subpopulation of CD14brightCD16 −HLA-DR+ MO/MA were compared in samples of normal donor peripheral blood and the peripheral blood and ascites from EOC patients. MDM were cultured with macrophage colony-stimulating factor (M-CSF) and activated with lipopolysaccharide (LPS) or a combination of LPS plus recombinant interferon-gamma. We determined that MO/MA from EOC patients had altered morphology and significantly less ADCC and phagocytic activity than did MO/MA from normal donors. ADCC and phagocytosis are mediated by receptors for the Fe portion of IgG (FcγRs), the expression of which were also found to be deficient on EOC MDM from peripheral blood and ascites. Anti-tumor functions not mediated by the FcγRs, such as macrophage mediated cytotoxicity and cytostasis, were not impaired in EOC MDM compared to normal donor MDM. Our findings also showed that MDM from both EOC patients and normal donors produce M-CSF-stimulated cytokines, including interleukin-8, tumor necrosis factor alpha, and interleukin-6, which have the potential to support ovarian tumor growth and metastasis. These findings may be relevant to the pathogenesis of EOC and to the development of future bioimmunotherapeutic strategies. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We previously demonstrated that bone marrow cells (BMCs) migrate to TC71 and A4573 Ewing’s sarcoma tumors where they can differentiate into endothelial cells (ECs) and pericytes and, participate in the tumor vascular development. This process of neo-vascularization, known as vasculogenesis, is essential for Ewing’s sarcoma growth with the soluble vascular endothelial growth factor, VEGF165, being the chemotactic factor for BMC migration to the tumor site. Inhibiting VEGF165 in TC71 tumors (TC/siVEGF7-1) inhibited BMC infiltration to the tumor site and tumor growth. Introducing the stromal-derived growth factor (SDF-1α) into the TC/siVEGF7-1 tumors partially restored vasculogenesis with infiltration of BMCs to a perivascular area where they differentiated into pericytes and rescued tumor growth. RNA collected from the SDF-1α-treated TC/siVEGF7-1 tumors also revealed an increase in platelet-derived growth factor B (PDGF-B) mRNA levels. PDGF-B expression is elevated in several cancer types and the role of PDGF-B and its receptor, PDGFR-β, has been extensively described in the process of pericyte maturation. However, the mechanisms by which PDGF-B expression is up-regulated during vascular remodeling and the process by which BMCs differentiate into pericytes during tumor vasculogenesis remain areas of investigation. In this study, we are the first to demonstrate that SDF-1α regulates the expression of PDGF-B via a transcriptional mechanism which involves binding of the ELK-1 transcription factor to the pdgf-b promoter. We are also first to validate the critical role of the SDF-1α/PDGF-B pathway in the differentiation of BMCs into pericytes both in vitro and in vivo. SDF-1α up-regulated PDGF-B expression in both TC/siVEGF7-1 and HEK293 cells. In contrast, down-regulating SDF-1α, down-regulated PDGF-B. We cloned the 2 kb pdgf-b promoter fragment into the pGL3 reporter vector and showed that SDF-1α induced pdgf-b promoter activity. We used chromatin immunoprecipitation (ChIP) and demonstrated that the ELK-1 transcription factor bound to the pdgf-b promoter in response to SDF-1α stimulation in both TC/siVEGF7-1 and HEK293 cells. We collected BMCs from the hind femurs of mice and cultured the cells in medium containing SDF-1α and PDGF-B and found that PDGFR-β+ BMCs differentiated into NG2 and desmin positive pericytes in vitro. In contrast, inhibiting SDF-1α and PDGF-B abolished this differentiation process. In vivo, we injected TC71 or A4573 tumor-bearing mice with the SDF-1α antagonist, AMD3100 and found that inhibiting SDF-1α signaling in the tumor microenvironment decreased the tumor microvessel density, decreased the tumor blood vessel perfusion and, increased tumor cell apoptosis. We then analyzed the effect of AMD3100 on vasculogenesis of Ewing’s sarcoma and found that BMCs migrated to the tumor site where they differentiated into ECs but, they did not form thick perivascular layers of NG2 and desmin positive pericytes. Finally, we stained the AMD3100-treated tumors for PDGF-B and showed that inhibiting SDF-1α signaling also inhibited PDGF-B expression. All together, these findings demonstrated that the SDF-1α/PDGF-B pathway plays a critical role in the formation of BM-derived pericytes during vasculogenesis of Ewing’s sarcoma tumors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Restoration of the tumor-suppression function by gene transfer of the melanoma differentiation-associated gene 7 (MDA7)/interleukin 24 (IL-24) successfully induces apoptosis in melanoma tumors in vivo. To address the molecular mechanisms involved, we previously revealed that MDA7/IL-24 treatment of melanoma cells down-regulates interferon regulatory factor (IRF)-1 expression and concomitantly up-regulates IRF-2 expression, which competes with the activity of IRF-1 and reverses the induction of IRF-1-regulated inducible nitric oxide synthase (iNOS). Interferons (IFNs) influence melanoma cell survival by modulating apoptosis. A class I IFN (IFN-alpha) has been approved for the treatment of advanced melanoma with some limited success. A class II IFN (IFN-gamma), on the other hand, supports melanoma cell survival, possibly through constitutive activation of iNOS expression. We therefore conducted this study to explore the molecular pathways of MDA7/IL-24 regulation of apoptosis via the intracellular induction of IFNs in melanoma. We hypothesized that the restoration of the MDA7/IL-24 axis leads to upregulation of class I IFNs and induction of the apoptotic cascade. We found that MDA7/IL-24 induces the secretion of endogenous IFN-beta, another class I IFN, leading to the arrest of melanoma cell growth and apoptosis. We also identified a series of apoptotic markers that play a role in this pathway, including the regulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas-FasL. In summary, we described a novel pathway of MDA7/IL-24 regulation of apoptosis in melanoma tumors via endogenous IFN-beta induction followed by IRF regulation and TRAIL/FasL system activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL/Apo2L) is a member of the TNF family of cytokines that induces apoptosis in a variety of tumor cells while sparing normal cells. However, many human cancer cell lines display resistance to TRAIL-induced apoptosis and the mechanisms contributing to resistance remain controversial. Previous studies have demonstrated that the dimeric transcription factor Nuclear Factor kappa B (NFκB) is constitutively active in a majority of human pancreatic cancer cell lines and primary tumors, and although its role in tumor progression remains unclear it has been suggested that NFκB contributes to TRAIL resistance. Based on this, I examined the effects of NFκB inhibitors on TRAIL sensitivity in a panel of nine pancreatic cancer cell lines. I show here that inhibitors of NFκB, including two inhibitors of the proteasome (bortezomib (Velcade™, PS-341) and NPI-0052), a small molecule inhibitor of IKK (PS1145), and a novel synthetic diterpene NIK inhibitor (NPI-1342) reverse TRAIL resistance in pancreatic cancer cell lines. Further analysis revealed that the expression of the anti-apoptosic proteins BclXL and XIAP was significantly decreased following exposure to these inhibitors alone and in combination with TRAIL. Additionally, treatment with NPI0052 and TRAIL significantly reduced tumor burden relative to the control tumors in an L3.6pl orthotopic pancreatic xenograft model. This was associated with a significant decrease in proliferation and an increase in caspase 3 and 8 cleavage. Combination therapy employing PS1145 or NPI-1342 in combination with TRAIL also resulted in a significant reduction in tumor burden compared to either agent alone in a Panc1 orthotopic xenograft model. My studies show that combination therapy with inhibitors of NFκB alone and TRAIL is effective in pre-clinical models of pancreatic cancer and suggests that the approach should be evaluated in patients. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. To determine whether transforming growth factor beta (TGF-β) receptor blockade using an oral antagonist has an effect on cardiac myocyte size in the hearts of transgenic mice with a heart failure phenotype. ^ Methods. In this pilot experimental study, cardiac tissue sections from the hearts of transgenic mice overexpressing tumor necrosis factor (MHCsTNF mice) having a phenotype of heart failure and wild-type mice, treated with an orally available TGF-β receptor antagonist were stained with wheat germ agglutinin to delineate the myocyte cell membrane and imaged using fluorescence microscopy. Using MetaVue software, the cardiac myocyte circumference was traced and the cross sectional area (CSA) of individual myocytes were measured. Measurements were repeated at the epicardial, mid-myocardial and endocardial levels to ensure adequate sampling and to minimize the effect of regional variations in myocyte size. ANOVA testing with post-hoc pairwise comparisons was done to assess any difference between the drug-treated and diluent-treated groups. ^ Results. There were no statistically significant differences in the average myocyte CSA measured at the epicardial, mid-myocardial or endocardial levels between diluent treated littermate control mice, drug treated normal mice, diluent-treated transgenic mice and drug-treated transgenic mice. There was no difference between the average pan-myocardial cross sectional area between any of the four groups mentioned above. ^ Conclusions. TGF-β receptor blockade using oral TGF-β receptor antagonist does not alter myocyte size in MHCsTNF mice that have a phenotype of heart failure. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasmacytoid dendritic cells (pDCs) selectively express TLR7 which allows them to respond to RNA viruses and TLR9 which allows them to respond to DNA viruses and CpG oligonucleotides. Upon exposure to virus pDCs produce vast amounts of type I interferon (IFN) directly inhibiting viral replication and contributing to the activation of other immune cells. The ability of pDCs to promote B and T cell differentiation through type I IFN has been well documented although the role of additional factors including tumor necrosis factor (TNF) family members has not been thoroughly addressed. Here the expression of selected TNF family members in pDCs was examined and the role of TNF receptor-ligand interactions in the regulation of B and T lymphocyte growth and differentiation by pDCs was investigated. Upon stimulation with CpG-B, pDCs exhibit strong and stable expression of CD70, a TNF family ligand that binds to its receptor CD27 on memory B cells and promotes plasma cell differentiation and Ig secretion. Using an in vitro pDC/B cell co-culture system, it was determined that CpG-B-stimulated pDCs induce the proliferation of CD40L-activated human peripheral B cells and Ig secretion. This occurs independently of IFN and residual CpG, and requires physical contact between pDCs and B cells. CpG-stimulated pDCs induce the proliferation of both naive and memory B cells although Ig secretion is restricted to the memory subset. Blocking the interaction of CD70 with CD27 using an antagonist anti-CD70 antibody reduces the induction of B cell proliferation and IgG secretion by CpG-B-stimulated pDCs. Published studies have also indicated an important role for CD70 in promoting the expansion of CD4+ and CD8+ T cells and the development of effector function. CpG-B-stimulated pDCs induce naïve CD4+ T cell proliferation and production of multiple cytokines including IFN-γ, TNF-α, IL-10, IL-4, IL-5 and IL-13. Blocking the function of CD70 with an antagonist anti-CD70 antibody significantly reduced the induction of naïve CD4+ T cell proliferation by CpG-B-stimulated pDCs and the production of IL-4 and IL-13. Collectively these data indicate an important role for CD70 in the regulation of B and T lymphocyte growth and differentiation by pDCs. ^