29 resultados para Tuberculosis in animals.


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The significance of nutritional factors in cancer research has been strongly emphasized. Such research is concerned not only with epidemiological effects relative to dietary factors on the causation of cancer, but with nutritional effects as an energy source on the prevention of cancer. Many studies speculate that the energy flow between tumor and host can be regulated by dietary intake. However, little knowledge on the comparison of the specific nutritional and energy requirements of different cells and tissues is available. Most popular and essential energy sources for the body are the carbohydrates. Among them, xylitol is known as efficient an energy source as glucose. In carbohydrate metabolism, glycolysis is one of the major energy producing pathways. However, recently the existence of an alternate catabolic pathway in mammals for carbohydrate besides glycolysis, i.e. bypass through triosephosphates to lactate via methylglyoxal has been suggested. This bypass was implicated to regulate glycolysis and also be responsible for the fluctuation in the levels of a regulator of cell growth. Methylglyoxal itself is known as a cancerostatic agent. The alterations of biochemical parameters in xylitol metabolism in animals indicated that xylitol may be metabolized through a methylglyoxal pathway.^ To elucidate the biological effect of xylitol as an energy source and the biological effect of its metabolites as a cancerostatis agent, the mode and extent of metabolism must be understood in tumor-bearing animals. Differential utilization of xylitol and glucose, if any, between tumor and host in such animals may exert tissue selective effects on both in terms of methylglyoxal formation and energy provision. The aim of this work was to assess the extent to which the differential utilization of xylitol might be used to generate different metabolic pathways in tumor and host, and to consider a role of nutrition in cancer.^ The results disclose that the existence of a pathway for biological methylglyoxal formation in normal rat liver has been confirmed in single cell suspension; the metabolic significance of the methylglyoxal pathway in the metabolism of glucose and xylitol has been evaluated quantitatively in normal rat liver and the differential metabolism of glucose and xylitol through overall catabolic pathways of carbohydrates has been studied in normal hepatic cells, AS-30D hepatoma and other several hepatoma lines. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Helicobacter pylori, which colonizes the stomach and causes the most common chronic infection in man, is associated with peptic ulceration, gastric carcinoma and gastric lymphoma. Studies in animals demonstrated that mucosal immunization could induce immune response against H. pylori and prevent H. pylori infection only if powerful mucosal adjuvants such as cholera toxin (CT) or heat-labile toxin of E. coli (LT) were used along with an H. pylori protein antigen. Adjuvants such as CT or LT cannot be used for humans because of their toxicity. Finding non-toxic alternative adjuvants/immunomodulators or immunization strategies that eliminates the use of adjuvants is critical for the development of efficacious human Helicobacter vaccines. We investigated whether several new adjuvants such as Muramyl Tripeptide Phosphatidylethonolamine (MTP-PE), QS21 (a Quil A derivative), Monophosphoryl lipid A (MPL) or heat shock proteins (HSP) of Mycobacterium tuberculosis could be feasible to develop a safe and effective mucosal vaccine against H. pylori using a murine model. C57/BL6 mice were immunized with liposomes incorporating each adjuvant along with urease, a major antigenic protein of H. pylori, to test their mucosal effectiveness. Since DNA vaccination eliminates both the use of adjuvants and antigens we also investigated whether immunization with plasmid DNA encoding urease could induce protective immunity to H. pylori infection in the same murine model. We found that oral vaccination with liposomal MTP-PE (6.7 m g) and urease, (100 m g) induced antigen-specific systemic and mucosal immune response and protected mice against H. pylori challenge when compared to control groups. Parenteral and mucosal immunizations with as little as 20 m g naked or formulated DNA encoding urease induced systemic and mucosal immune response against urease and partially protected mice against H. pylori infection. DNA vaccination provided long-lasting immunity and serum anti-urease IgG antibodies were elevated for up to 12 months. No toxicity was detected after immunizations with either liposomal MTP-PE and urease or plasmid DNA and both were well tolerated. We conclude that immunization liposomes containing MTP-PE and urease is a promising strategy deserving further investigation and may be considered for humans. DNA vaccination could be used to prime immune response prior to oral protein vaccination and may reduce the dose of protein and adjuvant needed to achieve protective immunity. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The study of colon cancer has taken advantage of the development of a model in animals in which tumors in the colon are easily induced by chemical treatment. When 1,2-dimethylhydrazine (DMH) is injected into rats tumor growth is observed in colon in preference to other tissues. This observation led us to investigate the Cytochrome P450 system in colon and its participation in the particular “colon sensitivity” to DMH. It has been established that the Cytochrome P450 system participates in the metabolism of DMH and the methyl carbonium product of Cytochrome P450 activation of DMH is responsible for DNA damage which is considered an initial step to carcinogenesis. The Cytochrome P450 system is a reasonable place to search for an explanation of this organotropic effect of DMH and we feel that the knowledge obtained from this study can take us closer to understanding the development of colonic malignancy. In our study we used a human colon cell line (LS174T) treated with DMH. The Cytochrome P450 system in the cells was manipulated with inducers of different isoforms of Cytochrome P450. The effect of DMH on colon cells was measured by determination of O-6-methylguanine which is a DNA adduct derived from the metabolism of this chemical and is associated with development of tumors. Our results support the hypothesis that Cytochrome P450 plays an important role in the damage to cellular DNA by DMH. This damage is increased after induction of Cytochromes P450 1A1 and 2E1. The effect of inhibition of the methyltransferase and glutathione systems on protection against DMH damage in colon demonstrated the importance of the protective role of the former and the lack of effective protection of the latter system. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A combination of psoralens and ultraviolet-A radiation referred to as PUVA, is widely used in the treatment of psoriasis. PUVA therapy is highly effective in killing hyperproliferative cells, but its mechanism of action has not been fully elucidated. Psoralen binds to DNA, and upon photoactivation by UVA, it forms monofunctional adducts and interstrand cross-links. PUVA treatment has been shown to be mutagenic and to produce tumors in animals. In addition, epidemiological studies have reported a 10 to 15 percent increased risk of developing squamous cell carcinoma in individuals treated chronically with PUVA. However, it remains a treatment for skin disorders such as psoriasis because its benefits outweigh its risks. The widespread use of PUVA therapy and its associated cancer risk requires us to understand the molecular mechanisms by which PUVA induces cell death. Immortalized JB6 mouse epidermal cells, p53−/− mice, and Fas Ligand−/− (gld) mice were used to investigate the molecular mechanism by which PUVA kills cells. Treatment of JB6 cells with 10 μg/ml 8-methoxypsoralen followed by irradiation with 20 kJ/m2 UVA resulted in cell death. The cells exhibited morphological and biochemical characteristics of apoptosis such as chromatin condensation, DNA ladder formation, and TUNEL-positivity. PUVA treatment stabilized and phosphorylated p53 leading to its activation, as measured by nuclear localization and induction of p21Waf/Cip1, a transcriptional target of p53. Subsequent in vivo studies revealed that there was statistically significantly less apoptosis in p53 −/− mice than in p53+/+ mice at 72 hours after PUVA. In addition, immunohistochemical analysis revealed more Fas and FasL expression in p53+/+ mice than in p53−/− mice, suggesting that p53 is required to transcriptionally activate Fas, which in turn causes the cells to undergo apoptosis. Studies with gld mice confirmed a role for Fas/FasL interactions in PUVA-induced apoptosis. There was statistically significantly less apoptosis in gld mice compared with wild-type mice 24, 48, and 72 hours after PUVA. These results demonstrate that PUVA-induced apoptosis in mouse epidermal cells requires p53 and Fas/FasL interactions. These findings may be important for designing effective treatments for diseases such as psoriasis without increasing the patient's risk for skin cancer. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The spontaneously hypertensive rat (SHR) is a model of essential hypertension. During the early development of hypertension, the SHR demonstrates increased proximal tubule (PT) Na+ reabsorption. I hypothesized that the increased PT Na+ reabsorption exhibited by the young SHR was due to altered sub-cellular distribution of Na+, K +-ATPase compared to the normotensive Wistar Kyoto (WKY). The hypothesis is supported, herein, by observations of greater Na+, K +-ATPase α 1 abundance in PT plasma membrane and lower abundance in late endosomes of 4wk SHR despite no difference in total PT α 1 abundance. There is a greater amount of Ser-18 unphosphorylated α 1 in the 4wk SHR PT. Total PT Na+, K+-ATPase γ abundance is greater in SHR at 4wk and 16wk but γ abundance in plasma membrane is greater only at 4wk. The phosphatase, calcineurin, was chosen for study because it is involved in the stimulation of Na+, K +-ATPase. No difference in calcineurin coding sequence, expression, or activity was observed in SHR. Gene expression arrays were next used to find candidate genes involved in the regulation of Na+, K +-ATPase. The first candidate analyzed was soluble epoxide hydrolase (sEH). The gene encoding sEH (EPHX2) showed lower expression in SHR. There was also a reduction in sEH protein abundance but there was no correlation between protein abundance and blood pressure in F2 progeny. Two EPHX2 alleles were identified, an ancestral allele and a variant allele containing four polymorphisms. sEH activity was greater in animals carrying the variant allele but the inheritance of the variant allele did not correlate with blood pressure. Gene expression arrays also led to the examination of genes involved in redox balance/Na+, K+-ATPase regulation. A pattern of lower expression of genes involved in reactive radical detoxification in SHR was discerned. Six transcription factor binding sites were identified that occurred more often in these genes. Three transcription factors that bind to the HNF1 site were expressed at lower levels in SHR. This points to the HNF1 transcriptional complex as an important trans-acting regulator of a wide range of genes involved in altered redox balance in SHR. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tuberculosis is the leading cause of death in the world due to a single infectious agent, making it critical to investigate all aspects of the immune response mounted against the causative agent, Mycobacterium tuberculosis , in order to better treat and prevent disease. Previous observations show a disparity in the ability to control mycobacterial growth between mouse strains sufficient in C5, such as C57BL/6 and B10.D2/nSnJ, and those naturally deficient in C5, such as A/J and B10.D2/nSnJ, with C5 deficient mice being more susceptible. It has been shown that during M. tuberculosis infection, C5 deficient macrophages have a defect in production of interleukin (IL)-12, a cytokine involved in the cyclical activation between infected macrophages and effector T cells. T cells stimulated by IL-12 produce interferon (IFN)-γ, the signature cytokine of T helper type 1 (Th1) cells. It is known that a cell-mediated Th1 response is crucial for control of M. tuberculosis in the lungs of humans and mice. This study demonstrates that murine T cells express detectable levels of CD88, a receptor for C5a (C5aR), following antigen presentation by macrophages infected with mycobacteria. T cells from C5 deficient mice infected with M. tuberculosis were found to secrete less IFN-γ and had a reduced Th1 phenotype associated with fewer cells expressing the transcription factor, T-box expressed in T cells (T-bet). The altered Th1 phenotype in M. tuberculosis infected C5 deficient mice coincided with a rise in IL-4 and IL-10 secretion from Th2 cells and inducible regulatory T cells, respectively. It was found that the ineffective T cell response to mycobacteria in C5 deficient mice was due indirectly to a lack of C5a via poor priming by infected macrophages and possibly by a direct interaction between T cells and C5a peptide. Therefore, these studies show a link between the cells of the innate and adaptive arms of the immune system, macrophages and T cells respectively, that was mediated by C5a using a mouse model of M. tuberculosis infection. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Opioids remain the drugs of choice in chronic pain treatment, but opioid tolerance, defined as a decrease in analgesic effect after prolonged or repeated use, dramatically limits their clinical utility. Opioid tolerance has classically been studied by implanting spinal catheters in animals for drug administration. This procedure has significant morbidity and mortality, as well as causing an inflammatory response which decreases the potency of opioid analgesia and possibly affects tolerance development. Therefore, we developed and validated a new method, intermittent lumbar puncture (Dautzenberg et al.), for the study of opioid analgesia and tolerance. Using this method, opioid tolerance was reliably induced without detectable morbidity. The dose of morphine needed to induce analgesia and tolerance using this method was about 100-fold lower than that required when using an intrathecal catheter. Only slight inflammation was found at the injection site, dissipated within seven mm. ^ DAMGO, an opioid μ receptor agonist, has been reported to inhibit morphine tolerance, but results from different studies are inconclusive. We evaluated the effect of DAMGO on morphine tolerance using our newly-developed ILP method, as well as other intrathecal catheter paradigms. We found that co-administration of sub-analgesic DAMGO with morphine using ILP did not inhibit morphine tolerance, but instead blocked the analgesic effects of morphine. Tolerance to morphine still developed. Tolerance to morphine can only be blocked by sub-analgesic dose of DAMGO when administered in a lumbar catheter, but not in cervical catheter settings. ^ Finally, we evaluated the effects of Gabapentin (GBP) on analgesia and morphine tolerance. We demonstrated that GBP enhanced analgesia mediated by both subanalgesic and analgesic doses of morphine although GBP itself was not analgesic. GBP increased potency and efficacy of morphine. GBP inhibited the expression, but not the development, of morphine tolerance. GBP blocked tolerance to analgesic morphine but not to subanalgesic morphine. GBP reversed the expression of morphine tolerance even after tolerance was established. These studies may begin to provide new insights into mechanisms of morphine tolerance development and improve clinical chronic pain management. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose. Fluorophotometry is a well validated method for assessing corneal permeability in human subjects. However, with the growing importance of basic science animal research in ophthalmology, fluorophotometry’s use in animals must be further evaluated. The purpose of this study was to evaluate corneal epithelial permeability following desiccating stress using the modified Fluorotron Master™. ^ Methods. Corneal permeability was evaluated prior to and after subjecting 6-8 week old C57BL/6 mice to experimental dry eye (EDE) for 2 and 5 days (n=9/time point). Untreated mice served as controls. Ten microliters of 0.001% sodium fluorescein (NaF) were instilled topically into each mouse’s left eye to create an eye bath, and left to permeate for 3 minutes. The eye bath was followed by a generous wash with Buffered Saline Solution (BSS) and alignment with the Fluorotron Master™. Seven corneal scans using the Fluorotron Master were performed during 15 minutes (1 st post-wash scans), followed by a second wash using BSS and another set of five corneal scans (2nd post-wash scans) during the next 15 minutes. Corneal permeability was calculated using data calculated with the FM™ Mouse software. ^ Results. When comparing the difference between the Post wash #1 scans within the group and the Post wash #2 scans within the group using a repeated measurement design, there was a statistical difference in the corneal fluorescein permeability of the Post-wash #1 scans after 5 days (1160.21±108.26 vs. 1000.47±75.56 ng/mL, P<0.016 for UT-5 day comparison 8 [0.008]), but not after only 2 days of EDE compared to Untreated mice (1115.64±118.94 vs. 1000.47±75.56 ng/mL, P>0.016 for UT-2 day comparison [0.050]). There was no statistical difference between the 2 day and 5 day Post wash #1 scans (P=.299). The Post-wash #2 scans demonstrated that EDE caused a significant NaF retention at both 2 and 5 days of EDE compared to baseline, untreated controls (1017.92±116.25, 1015.40±120.68 vs. 528.22±127.85 ng/mL, P<0.05 [0.0001 for both]). There was no statistical difference between the 2 day and 5 day Post wash #2 scans (P=.503). The comparison between the Untreated post wash #1 with untreated post wash #2 scans using a Paired T-test showed a significant difference between the two sets of scans (P=0.000). There is also a significant difference between the 2 day comparison and the 5 day comparison (P values = 0.010 and 0.002, respectively). ^ Conclusion. Desiccating stress increases permeability of the corneal epithelium to NaF, and increases NaF retention in the corneal stroma. The Fluorotron Master is a useful and sensitive tool to evaluate corneal permeability in murine dry eye, and will be a useful tool to evaluate the effectiveness of dry eye treatments in animal-model drug trials.^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Trehalose dimycolate (TDM) is a mycobacterial glycolipid that is released from the surface of virulent M. tuberculosis. We evaluated the rate of growth, colony characteristics and production of TDM by Mycobacterium tuberculosis strains isolated from different clinical sites. Since detergent removes TDM from organisms, we analyzed growth rate and colony morphology of 79 primary clinical isolates grown as pellicles on the surface of detergent free Middlebrook 7H9 media. The genotype of each had been previously characterized. TDM production was measured by thin layer chromatography on 32 of these isolates. We found that strains isolated from pulmonary sites produced large amounts of TDM, grew rapidly as thin spreading pellicles, showed early cording (<1 week) and climbed the sides of the dish. In contrast, the extrapulmonary isolates (lymph node and bone marrow) produced less TDM (p<0.01), grew as discrete patches with little tendency to spread or climb the walls (p<0.02). The Beijing pulmonary (BP) isolates produced more TDM than non Beijing pulmonary isolates. The largest differences were observed in Beijing strains. The Beijing pulmonary isolates produced more TDM and grew faster than the Beijing extrapulmonary isolates (p<0.01). This was true even when the pulmonary and extrapulmonary isolates were derived from the same clade. These growth characteristics were consistently observed only on the first passage after primary isolation. This suggests that the differences in growth rate and TDM production observed reflect differences in gene expression patterns of pulmonary and extrapulmonary infections, that Mycobacterium tuberculosis in the lung grows more rapidly and produces more TDM than it does in extrapulmonary sites. This provides new opportunities to investigate gene expression of Mycobacterium tuberculosis in human.^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study was conducted by either literature review or actual field survey. Results are summarized as follows: (1) Long-term occupational exposure of workers to benzene vapor at levels of 3-7 ppm, 2-3 ppm and 1.6 ppm may result in a decreased level of leucocyte alkaline phosphates, an increased incidence of chromosome aberrations and an increased level of ALA in erythrocytes, respectively; (2) Benzene is capable of causing fetotoxic effects in animals at levels as low as 10 ppm by volume; (3) Exposure of animals to or less than 1 ppm benzene vapor may result in leucopenia, an inverse ratio of muscle antagonist chronaxy and a decreased level of ascorbic acid in fetus's and mother's liver as well as whole embryo; (4) Benzene is causally associated with the increased incidence of pancytopenia, including unicytopenia, bicytopenia and aplastic anemia, and chromosome aberrations in occupational exposure population, and at best benzene must also be considered as a leukemogen; (5) Since it can be emitted into the atmosphere from both man-made and natural sources, benzene in some concentrations is present everywhere in the various compartments of the environment; (6) The findings of the emission of benzene from certain natural sources indicate that reducing benzene to a zero-level of exposure is theoretically impossible; (7) The annual average of benzene concentration detected in the Houston ambient air is 2.50 ppb, which is about 2.4 times higher than the nation-wide annual average exposure level and may have been some health implications to the general public; (8) In the Houston area, stationary sources are more important than mobile sources in contributing to benzene in the ambient air. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The potential for significant human populations to experience long-term inhalation of formaldehyde and reports of symptomatology due to this exposure has led to a considerable interest in the toxicologic assessment of risk from subchronic formaldehyde exposures using animal models. Since formaldehyde inhalation depresses certain respiratory parameters in addition to its other forms of toxicity, there is a potential for the alteration of the actual dose received by the exposed individual (and the resulting toxicity) due to this respiratory effect. The respiratory responses to formaldehyde inhalation and the subsequent pattern of deposition were therefore investigated in animals that had received subchronic exposure to the compound, and the potential for changes in the formaldehyde dose received due to long-term inhalation evaluated. Male Sprague-Dawley rats were exposed to either 0, 0.5, 3, or 15 ppm formaldehyde for 6 hours/day, 5 days/week for up to 6 months. The patterns of respiratory response, deposition and the compensation mechanisms involved were then determined in a series of formaldehyde test challenges to both the upper and to the lower respiratory tracts in separate groups of subchronically exposed animals and age-specific controls (four concentration groups, two time points). In both the control and pre-exposed animals, there was a characteristic recovery of respiratory parameters initially depressed by formaldehyde inhalation to at or approaching pre-exposure levels within 10 minutes of the initiation of exposure. Also, formaldehyde deposition was found to remain very high in the upper and lower tracts after long-term exposure. Therefore, there was probably little subsequent effect on the dose received by the exposed individual that was attributable to the repeated exposures. There was a diminished initial minute volume response in test challenges of both the upper and lower tracts of animals that had received at least 16 weeks of exposure to 15 ppm, with compensatory increases in tidal volume in the upper tract and respiratory rate in the lower tract. However, this dose-related effect was probably not relevant to human risk estimation because this formaldehyde dose is in excess of that experienced by human populations. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Obesity has a complex, multi-factorial etiology. Infectious agents have recently emerged as a possible contributor to the current obesity epidemic. Seven viruses have demonstrated an association with obesity in animals; however, Adenovirus-36 (Ad-36) is the only known virus associated with obesity in humans. The primary aim of this research was to determine the association between Ad-36 infection and the expression of obesity related hormones in children. Additionally, this study proposed to compare the mean three year change in the level of obesity related hormones between Ad-36 positive and negative children. This study utilized pilot data collected from 98 children at baseline and year three of the Project Heartbeat! cohort. Fasting serum samples were analyzed for the concentration of adiponectin, insulin and leptin. The crude analysis uncovered Ad-36 positive children had significantly lower mean concentrations of insulin (p=0.039) and leptin (p=0.038) at baseline compared to Ad-36 negative children. The results of the adjusted analysis indicated the leptin association with Ad-36 infection at baseline was statistically significant even after controlling for age, sex, ethnicity, and BMI percentile. The longitudinal evaluation revealed individuals with a history of Ad-36 infection experienced a larger mean decrease in adiponectin, a larger mean increase in leptin, and a smaller mean increase in insulin levels over a three year period compared to individuals without a history of infection. These results suggest Ad-36 infection may produce changes in hormone expression. The only statistically significant findings in the crude and adjusted longitudinal analysis occurred at baseline when the children were younger, suggesting physical changes that occur during sexual maturation may mask or enhance Ad-36 induced changes in hormone expression. Furthermore, the longitudinal analysis revealed the duration and course of Ad-36 infection may influence changes in the expression of obesity-related hormones. Taken together, the results of this pilot study are suggestive of an association between Ad-36 infection and the expression of obesity-related hormones.^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tuberculosis is a major cause of death due to an infection in mankind. BCG vaccine protects against childhood tuberculosis although, it fails to protect against adult tuberculosis. BCG vaccine localizes to immature phagosomes of macrophages, and avoids lysosomal fusion, which decreases peptide antigen production. Peptides are essential for macrophage-mediated priming of CD4 and CD8 T cells respectively through MHC-II and MHC-I pathways. Furthermore, BCG reduces the expression of MHC-II in macrophages of mice after infection, through Toll-like receptor-1/2 (TLR-1/2) mediated signaling. In my first aim, I hypothesized that BCG-induced reduction of MHC-II levels in macrophages can decrease CD4 T cell function, while activation of other surface Toll-like receptors (TLR) can enhance CD4 T cell function. An in vitro antigen presentation model was used where, TLR activated macrophages presented an epitope of Ag85B, a major immunogen of BCG to CD4 T cells, and T cell derived IL-2 was quantitated as a measure of antigen presentation. Macrophages with BCG were poor presenters of Ag85B while, TLR-7/9/5/4 and 1/2 activation led to an enhanced antigen presentation. Furthermore, TLR-7/9 activation was found to down-regulate the degradation of MHC-II through ubiquitin ligase MARCH1, and also stimulate MHC-II expression through activation of AP-1 and CREB transcription elements via p38 and ERK1/2 MAP kinases. I conclude from Aim-I studies that TLR-7/9 ligands can be used as more effective ‘adjuvants’ for BCG vaccine. In Aim-II, I evaluated the poor CD8 T cell function in BCG vaccinated mice thought to be due to a decreased leak of antigens into cytosol from immature phagosomes, which reduces the MHC-I mediated activation of CD8 T cells. I hypothesized that rapamycin co-treatment could boost CD8 T cell function since it was known to sort BCG vaccine into lysosomes increasing peptide generation, and it also enhanced the longevity of CD8 T cells. Since CD8 T cell function is a dynamic event better measurable in vivo, mice were given BCG vaccine with or without rapamycin injections and challenged with virulent Mycobacterium tuberculosis. Organs were analysed for tetramer or surface marker stained CD8 T cells using flow cytometry, and bacterial counts of organisms for evaluation of BCG-induced protection. Co-administration of rapamycin with BCG significantly increased the numbers of CD8 T cells in mice which developed into both short living effector- SLEC type of CD8 T cells, and memory precursor effector-MPEC type of longer-living CD8 T cells. Increased levels of tetramer specific-CD8 T cells correlated with a better protection against tuberculosis in rapamycin-BCG group compared to BCG vaccinated mice. When rapamycin-BCG mice were rested and re-challenged with M.tuberculosis, MPECs underwent stronger recall expansion and protected better against re-infection than mice vaccinated with BCG alone. Since BCG induced immunity wanes with time in humans, we made two novel observations in this study that adjuvant activation of BCG vaccine and rapamycin co-treatment both lead to a stronger and longer vaccine-mediated immunity to tuberculosis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mycobacterium tuberculosis, the causative agent of tuberculosis, is a facultative intracellular pathogen that uses the host mononuclear phagocyte as a niche for survival and replication during infection. Complement component C3 has previously been shown to enhance the binding of M. tuberculosis to mononuclear phagocytes. Using a C3 ligand affinity blot protocol, we identified a 30 kDa C3-binding protein in M. tuberculosis as heparin-binding hemagglutinin (HbhA). HbhA was found to be a hydrophobic protein that localized to the cell membrane/cell wall fraction of M. tuberculosis, and this protein has previously been shown by others to be located on the surface of M. tuberculosis. The C3-binding activity of HbhA was localized to the C-terminus of the protein, which consists of lysine-alanine repeats. Full-length recombinant HbhA coated onto latex beads was shown to mediate the adherence of the beads to murine macrophage-like cells in both a C3-dependent and a C3-independent manner. An in-frame 576 by deletion in the hbhA gene was created in a virulent strain of M. tuberculosis using a PCR technique known as gene splicing by overlap extension (SOEing). Using the ΔhbhA mutant, HbhA was found not to be necessary for growth of M. tuberculosis in laboratory media or in macrophage-like cells, nor is HbhA required for adherence of M. tuberculosis to macrophage-like cells. HbhA is, however, required for infectivity of M. tuberculosis in mice. Mice infected with the ΔhbhA mutant show decreased growth in the lungs, liver, and spleen compared to mice infected with the wild-type strain. Using the ΔhbhA mutant strain, we were able to purify and identify a second 30-kDa C3-binding protein, HupB. These data demonstrate that HbhA is required for the in vivo but not the in vitro survival of M. tuberculosis and that HbhA is not necessary for the adherence of M. tuberculosis to the macrophage-like cells used in these studies. The expression of two proteins that bind human C3 may aid in the efficient binding of M. tuberculosis to complement receptors for uptake into mononuclear cells, or may influence other aspects of the host-parasite interaction. ^