18 resultados para TOLL-LIKE RECEPTOR-2
Resumo:
Triple-negative breast cancers (TNBC) are characterized by the lack of or reduced expression of the estrogen and progesterone receptors, and normal expression of the human epidermal growth factor receptor 2. The lack of a well-characterized target for treatment leaves only systemic chemotherapy as the mainstay of treatment. Approximately 60-70% of patients are chemosensitive, while the remaining majority does not respond. Targeted therapies that take advantage of the unique molecular perturbations found in triple-negative breast cancer are needed. The genes that are frequently amplified or overexpressed represent potential therapeutic targets for triple-negative breast cancer. The purpose of this study was to identify and validate novel therapeutic targets for triple-negative breast cancers. 681 genes showed consistent and highly significant overexpression in TNBC compared to receptor-positive cancers in 2 data sets. For two genes, 3 of the 4 siRNAs showed preferential growth inhibition in TNBC cells. These two genes were the low density lipoprotein receptor-related protein 8 (LRP8) and very low-density lipoprotein receptor (VLDLR). Exposure to their cognate ligands, reelin and apolipoprotein E isoform 4 (ApoE4), stimulated the growth of TNBC cells in vitro. Suppression of the expression of either LRP8 or VLDLR or exposure to RAP (an inhibitor of ligand binding to LRP8 and VLDLR) abolished this ligand-induced proliferation. High-throughput protein and metabolic arrays revealed that ApoE4 stimulation rescued TNBC cells from serum-starvation induced up-regulation of genes involved in lipid biosynthesis, increased protein expression of oncogenes involved in the MAPK/ERK and DNA repair pathways, and reduced the serum-starvation induction of biochemicals involved in oxidative stress response and glycolytic metabolism. shLRP8 MDA-MB-231 xenografts had reduced tumor volume, in comparison to parental and shCON xenografts. These results indicate that LRP8-APOE signaling confers survival advantages to TNBC tumors under reduced nutrient conditions and during cellular environmental stress. We revealed that the LRP8-APOE receptor-ligand system is overexpressed in human TNBC. We also demonstrated that this receptor system mediates a strong growth promoting and survival function in TNBC cells in vitro and helps to sustain the growth of MDA-MD-231 xenografts. We propose that inhibitors of LRP8-APOE signaling may be clinically useful therapeutic agents for triple-negative breast cancer.
Resumo:
Hemophilia A is a clotting disorder caused by functional factor VIII (FVIII) deficiency. About 25% of patients treated with therapeutic recombinant FVIII develop antibodies (inhibitors) that render subsequent FVIII treatments ineffective. The immune mechanisms of inhibitor formation are not entirely understood, but circumstantial evidence indicates a role for increased inflammatory response, possibly via stimulation of Toll-like receptors (TLRs), at the time of FVIII immunization. I hypothesized that stimulation through TLR4 in conjunction with FVIII treatments would increase the formation of FVIII inhibitors. To test this hypothesis, FVIII K.O. mice were injected with recombinant human FVIII with or without concomitant doses of TLR4 agonist (lipopoysaccharide; LPS). The addition of LPS combined with FVIII significantly increased the rate and the production of anti-FVIII IgG antibodies and neutralizing FVIII inhibitors. In the spleen, repeated in vivo TLR4 stimulation with LPS increased the relative percentage of macrophages and dendritic cells (DCs) over the course of 4 injections. However, repeated in vivo FVIII stimulation significantly increased the density of TLR4 expressed on the surface of all spleen antigen presenting cells (APCs). Culture of splenocytes isolated from mice revealed that the combined stimulation of LPS and FVIII also synergistically increased early secretion of the inflammatory cytokines IL-6, TNF-α, and IL-10, which was not maintained throughout the course of the repeated injections. While cytokine secretion was relatively unchanged in response to FVIII re-stimulation in culture, LPS re-stimulation in culture induced increased and prolonged inflammatory cytokine secretion. Re-stimulation with both LPS and FVIII induced cytokine secretion similar to LPS stimulation alone. Interestingly, long term treatment of mice with LPS alone resulted in splenocytes that showed reduced response to FVIII in culture. Together these results indicated that creating a pro-inflammatory environment through the combined stimulation of chronic, low-dose LPS and FVIII changed not only the populations but also the repertoire of APCs in the spleen, triggering the increased production of FVIII inhibitors. These results suggested an anti-inflammatory regimen should be instituted for all hemophilia A patients to reduce or delay the formation of FVIII inhibitors during replacement therapy.
Resumo:
Development of homology modeling methods will remain an area of active research. These methods aim to develop and model increasingly accurate three-dimensional structures of yet uncrystallized therapeutically relevant proteins e.g. Class A G-Protein Coupled Receptors. Incorporating protein flexibility is one way to achieve this goal. Here, I will discuss the enhancement and validation of the ligand-steered modeling, originally developed by Dr. Claudio Cavasotto, via cross modeling of the newly crystallized GPCR structures. This method uses known ligands and known experimental information to optimize relevant protein binding sites by incorporating protein flexibility. The ligand-steered models were able to model, reasonably reproduce binding sites and the co-crystallized native ligand poses of the β2 adrenergic and Adenosine 2A receptors using a single template structure. They also performed better than the choice of template, and crude models in a small scale high-throughput docking experiments and compound selectivity studies. Next, the application of this method to develop high-quality homology models of Cannabinoid Receptor 2, an emerging non-psychotic pain management target, is discussed. These models were validated by their ability to rationalize structure activity relationship data of two, inverse agonist and agonist, series of compounds. The method was also applied to improve the virtual screening performance of the β2 adrenergic crystal structure by optimizing the binding site using β2 specific compounds. These results show the feasibility of optimizing only the pharmacologically relevant protein binding sites and applicability to structure-based drug design projects.