38 resultados para Synapses GABAergiques


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gap junction proteins form the substrate for electrical coupling between neurons. These electrical synapses are widespread in the CNS and serve a variety of important functions. In the retina, connexin 36 (Cx36) gap junctions couple AII amacrine cells and are a requisite component of the high-sensitivity rod photoreceptor pathway. AII amacrine cell coupling strength is dynamically regulated by background light intensity, and uncoupling is thought to be mediated by dopamine signaling via D(1)-like receptors. One proposed mechanism for this uncoupling involves dopamine-stimulated phosphorylation of Cx36 at regulatory sites, mediated by protein kinase A. Here we provide evidence against this hypothesis and demonstrate a direct relationship between Cx36 phosphorylation and AII amacrine cell coupling strength. Dopamine receptor-driven uncoupling of the AII network results from protein kinase A activation of protein phosphatase 2A and subsequent dephosphorylation of Cx36. Protein phosphatase 1 activity negatively regulates this pathway. We also find that Cx36 gap junctions can exist in widely different phosphorylation states within a single neuron, implying that coupling is controlled at the level of individual gap junctions by locally assembled signaling complexes. This kind of synapse-by-synapse plasticity allows for precise control of neuronal coupling, as well as cell-type-specific responses dependent on the identity of the signaling complexes assembled.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Synaptic plasticity underlies many aspect of learning memory and development. The properties of synaptic plasticity can change as a function of previous plasticity and previous activation of synapses, a phenomenon called metaplasticity. Synaptic plasticity not only changes the functional connectivity between neurons but in some cases produces a structural change in synaptic spines; a change thought to form a basis for this observed plasticity. Here we examine to what extent structural plasticity of spines can be a cause for metaplasticity. This study is motivated by the observation that structural changes in spines are likely to affect the calcium dynamics in spines. Since calcium dynamics determine the sign and magnitude of synaptic plasticity, it is likely that structural plasticity will alter the properties of synaptic plasticity. METHODOLOGY/PRINCIPAL FINDINGS: In this study we address the question how spine geometry and alterations of N-methyl-D-aspartic acid (NMDA) receptors conductance may affect plasticity. Based on a simplified model of the spine in combination with a calcium-dependent plasticity rule, we demonstrated that after the induction phase of plasticity a shift of the long term potentiation (LTP) or long term depression (LTD) threshold takes place. This induces a refractory period for further LTP induction and promotes depotentiation as observed experimentally. That resembles the BCM metaplasticity rule but specific for the individual synapse. In the second phase, alteration of the NMDA response may bring the synapse to a state such that further synaptic weight alterations are feasible. We show that if the enhancement of the NMDA response is proportional to the area of the post synaptic density (PSD) the plasticity curves most likely return to the initial state. CONCLUSIONS/SIGNIFICANCE: Using simulations of calcium dynamics in synaptic spines, coupled with a biophysically motivated calcium-dependent plasticity rule, we find under what conditions structural plasticity can form the basis of synapse specific metaplasticity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multiple interlinked positive feedback loops shape the stimulus responses of various biochemical systems, such as the cell cycle or intracellular Ca2+ release. Recent studies with simplified models have identified two advantages of coupling fast and slow feedback loops. This dual-time structure enables a fast response while enhancing resistances of responses and bistability to stimulus noise. We now find that (1) the dual-time structure similarly confers resistance to internal noise due to molecule number fluctuations, and (2) model variants with altered coupling, which better represent some specific biochemical systems, share all the above advantages. We also develop a similar bistable model with coupling of a fast autoactivation loop to a slow loop. This model's topology was suggested by positive feedback proposed to play a role in long-term synaptic potentiation (LTP). The advantages of fast response and noise resistance are also present in this autoactivation model. Empirically, LTP develops resistance to reversal over approximately 1h . The model suggests this resistance may result from increased amounts of synaptic kinases involved in positive feedback.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calcium levels in spines play a significant role in determining the sign and magnitude of synaptic plasticity. The magnitude of calcium influx into spines is highly dependent on influx through N-methyl D-aspartate (NMDA) receptors, and therefore depends on the number of postsynaptic NMDA receptors in each spine. We have calculated previously how the number of postsynaptic NMDA receptors determines the mean and variance of calcium transients in the postsynaptic density, and how this alters the shape of plasticity curves. However, the number of postsynaptic NMDA receptors in the postsynaptic density is not well known. Anatomical methods for estimating the number of NMDA receptors produce estimates that are very different than those produced by physiological techniques. The physiological techniques are based on the statistics of synaptic transmission and it is difficult to experimentally estimate their precision. In this paper we use stochastic simulations in order to test the validity of a physiological estimation technique based on failure analysis. We find that the method is likely to underestimate the number of postsynaptic NMDA receptors, explain the source of the error, and re-derive a more precise estimation technique. We also show that the original failure analysis as well as our improved formulas are not robust to small estimation errors in key parameters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The neuropeptide Phe-Met-Arg-Phe-NH(2) (FMRFa) can induce transcription-dependent long-term synaptic depression (LTD) in Aplysia sensorimotor synapses. We investigated the role of the ubiquitin-proteasome system and the regulation of one of its components, ubiquitin C-terminal hydrolase (ap-uch), in LTD. LTD was sensitive to presynaptic inhibition of the proteasome and was associated with upregulation of ap-uch mRNA and protein. This upregulation appeared to be mediated by CREB2, which is generally regarded as a transcription repressor. Binding of CREB2 to the promoter region of ap-uch was accompanied by histone hyperacetylation, suggesting that CREB2 cannot only inhibit but also promote gene expression. CREB2 was phosphorylated after FMRFa, and blocking phospho-CREB2 blocked LTD. In addition to changes in the expression of ap-uch, the synaptic vesicle-associated protein synapsin was downregulated in LTD in a proteasome-dependent manner. These results suggest that proteasome-mediated protein degradation is engaged in LTD and that CREB2 may act as a transcription activator under certain conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hippocampal place cells in the rat undergo experience-dependent changes when the rat runs stereotyped routes. One such change, the backward shift of the place field center of mass, has been linked by previous modeling efforts to spike-timing-dependent plasticity (STDP). However, these models did not account for the termination of the place field shift and they were based on an abstract implementation of STDP that ignores many of the features found in cortical plasticity. Here, instead of the abstract STDP model, we use a calcium-dependent plasticity (CaDP) learning rule that can account for many of the observed properties of cortical plasticity. We use the CaDP learning rule in combination with a model of metaplasticity to simulate place field dynamics. Without any major changes to the parameters of the original model, the present simulations account both for the initial rapid place field shift and for the subsequent slowing down of this shift. These results suggest that the CaDP model captures the essence of a general cortical mechanism of synaptic plasticity, which may underlie numerous forms of synaptic plasticity observed both in vivo and in vitro.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocular dominance (OD) plasticity is a robust paradigm for examining the functional consequences of synaptic plasticity. Previous experimental and theoretical results have shown that OD plasticity can be accounted for by known synaptic plasticity mechanisms, using the assumption that deprivation by lid suture eliminates spatial structure in the deprived channel. Here we show that in the mouse, recovery from monocular lid suture can be obtained by subsequent binocular lid suture but not by dark rearing. This poses a significant challenge to previous theoretical results. We therefore performed simulations with a natural input environment appropriate for mouse visual cortex. In contrast to previous work, we assume that lid suture causes degradation but not elimination of spatial structure, whereas dark rearing produces elimination of spatial structure. We present experimental evidence that supports this assumption, measuring responses through sutured lids in the mouse. The change in assumptions about the input environment is sufficient to account for new experimental observations, while still accounting for previous experimental results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Late long-term potentiation (L-LTP) denotes long-lasting strengthening of synapses between neurons. L-LTP appears essential for the formation of long-term memory, with memories at least partly encoded by patterns of strengthened synapses. How memories are preserved for months or years, despite molecular turnover, is not well understood. Ongoing recurrent neuronal activity, during memory recall or during sleep, has been hypothesized to preferentially potentiate strong synapses, preserving memories. This hypothesis has not been evaluated in the context of a mathematical model representing ongoing activity and biochemical pathways important for L-LTP. In this study, ongoing activity was incorporated into two such models - a reduced model that represents some of the essential biochemical processes, and a more detailed published model. The reduced model represents synaptic tagging and gene induction simply and intuitively, and the detailed model adds activation of essential kinases by Ca(2+). Ongoing activity was modeled as continual brief elevations of Ca(2+). In each model, two stable states of synaptic strength/weight resulted. Positive feedback between synaptic weight and the amplitude of ongoing Ca(2+) transients underlies this bistability. A tetanic or theta-burst stimulus switches a model synapse from a low basal weight to a high weight that is stabilized by ongoing activity. Bistability was robust to parameter variations in both models. Simulations illustrated that prolonged periods of decreased activity reset synaptic strengths to low values, suggesting a plausible forgetting mechanism. However, episodic activity with shorter inactive intervals maintained strong synapses. Both models support experimental predictions. Tests of these predictions are expected to further understanding of how neuronal activity is coupled to maintenance of synaptic strength. Further investigations that examine the dynamics of activity and synaptic maintenance can be expected to help in understanding how memories are preserved for up to a lifetime in animals including humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of the brain and its underlying circuitry is dependent on the formation of trillions of chemical synapses, which are highly specialized contacts that regulate the flow of information from one neuron to the next. It is through these synaptic connections that neurons wire together into networks capable of performing specific tasks, and activity-dependent changes in their structural and physiological state is one way that the brain is thought to adapt and store information. At the ultrastructural level, developmental and activity-dependent changes in the size and shape of dendritic spines have been well documented, and it is widely believed that structural changes in spines are a hallmark sign of synapse maturation and alteration of synaptic physiology. While changes in spine structure have been studied extensively, changes in one of its most prominent components, the postsynaptic density (PSD), have largely evaded observation. The PSD is a protein-rich organelle on the cytoplasmic side of the postsynaptic membrane, where it sits in direct opposition to the presynaptic terminal. The PSD functions both to cluster neurotransmitter receptors at the cell surface as well as organize the intracellular signaling molecules responsible for transducing extracellular signals to the postsynaptic cell. Much is known about the chemical composition of the PSD, but the structural arrangement of its molecular components is not well documented. Adding to the difficulty of understanding such a complex mass of protein machinery is the fact that its protein composition is known to change in response to synaptic activity, meaning that its structure is plastic and no two PSDs are identical. Here, immuno-gold labeling and electron tomography of PSDs isolated throughout development was used to track changes in both the structure and molecular composition of the PSD. State-of-the-art cryo-electron tomography was used to study the fine structure of the PSD during development, and provides an unprecedented glimpse into its molecular architecture in an un-fixed, unstained and hydrated state. Through this analysis, large structural and compositional changes are apparent and suggest a model by which the PSD is first assembled as a mesh-like lattice of proteins that function as support for the later recruitment of various PSD components. Spatial analysis of the recruitment of proteins into the PSD demonstrated that its assembly has an underlying order.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A change in synaptic strength arising from the activation of two neuronal pathways at approximately the same time is a form of associative plasticity and may underlie classical conditioning. Previously, a cellular analog of a classical conditioning protocol has been demonstrated to produce short-term associative plasticity at the connections between sensory and motor neurons in Aplysia. A similar training protocol produced long-term (24 hour) enhancement of excitatory postsynaptic potentials (EPSPs). EPSPs produced by sensory neurons in which activity was paired with a reinforcing stimulus were significantly larger than unpaired controls 24 hours after training. To examined whether the associative plasticity observed at these synapses may be involved in higher-order forms of classical conditioning, a neural analog of contingency was developed. In addition, computer simulations were used to analyze whether the associative plasticity observed in Aplysia could, in theory, account for second-order conditioning and blocking. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A model for cerebellar involvement in motor learning was tested using classical eyelid conditioning in the rabbit. Briefly, we assume that modifications of the strength of granule cell synapses at Purkinje cells in the cerebellar cortex and mossy fiber (MF) synapses at cerebellar interpositus nuclei are responsible for the acquisition, adaptively-timed expression, and extinction of conditioned eyelid responses (CRs). A corollary of these assumptions is that the cerebellar cortex is necessary for acquisition and extinction. This model also suggests a mechanism whereby the cerebellar cortex can discriminate different times during a conditioned stimulus (CS) and thus mediate the learned timing of CRs. Therefore, experiments were done to determine the role of the cerebellar cortex in the timing, extinction, and acquisition of CRs. Lesions of the cerebellar cortex that included the anterior lobe disrupted the learned timing of CRs such that they occurred at extremely short latencies. Stimulation of MFs in the middle cerebellar peduncle as the CS could support differently timed CRs in the same animal. These data indicate that synaptic plasticity in the cerebellar cortex mediates the learned timing of CRs. These short-latency CRs which resulted from anterior lobe damage did not extinguish, while CRs in animals receiving lesions which did not include the anterior lobe extinguished normally. Preliminary data suggests that lesions of the anterior lobe which produce short-latency responses prevent the acquisition of CRs to a novel CS. These findings indicate that the anterior lobe of cerebellar cortex is necessary for eyelid conditioning. The involvement of the anterior lobe in eyelid conditioning has not been previously reported, however, the anterior lobe has generally been spared in lesion studies examining cerebellar cortex involvement in eyelid conditioning due to its relatively inaccessible location. The observation that the anterior lobe of the cerebellar cortex is not always required for the basic expression of CRs, but is necessary for response timing, extinction, and acquisition, is consistent with the hypothesis that eyelid conditioning can involve plasticity in both the cerebellar cortex and interpositus nucleus and that plasticity in the nucleus is controlled by Purkinje cell activity. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plasticity at the connections between sensory neurons and their follower cells in Aplysia has been used extensively as a model system to examine mechanisms of simple forms of learning, such as sensitization. Sensitization is induced, at least in part, by the transmitter serotonin (5-HT) and expressed in several forms, including facilitation of sensorimotor connections. Spike broadening has been believed to be a key mechanism underlying facilitation of nondepressed synapses. Previously, this broadening was believed to be dependent primarily on cAMP/protein kinase A (PKA)-mediated reduction of a noninactivating, relatively voltage-independent K$\sp{+}$ current termed the S-K$\sp+$ current (I$\sb{\rm K{,}S}$). Recent evidence, however, suggests that 5-HT-induced somatic spike broadening is composed of at least two components: a cAMP-dependent, rapidly developing component and a cAMP-independent, slowly developing component.^ Phorbol esters, activators of protein kinase C (PKC), mimicked the cAMP-independent component of 5-HT-induced broadening. Staurosporine, which inhibits PKC, had little effect on the rapidly developing component of 5-HT-induced broadening, but inhibited significantly the slowly developing component. These results suggest that PKC is involved in the cAMP-independent component of 5-HT-induced broadening. The membrane currents responsible for the slowly developing component of broadening were examined. Activation of PKC mimicked, and partially occluded, 5-HT-induced modulation of membrane currents above 0 mV, where a voltage-dependent K$\sp+$ current (I$\sb{\rm K{,}V}$) is significantly activated. This modulation was complex because it was associated with a reduction in the magnitude of I$\sb{\rm K{,}V}$, as well as a slowing of both activation and inactivation kinetics of I$\sb{\rm K{,}V}$. These results support the hypothesis that PKC modulates I$\sb{\rm K{,}V}$ and that this modulation contributes to the slowly developing component of 5-HT-induced broadening. Based on these results and others, a new scheme for 5-HT-induced spike broadening is proposed in which the modulatory effects are mediated via two second messenger/protein kinase systems converging and diverging on multiple ionic conductances.^ The relationship between spike broadening and synaptic facilitation was also examined. Pharmacological reduction of I$\sb{\rm K{,}V}$ by low concentrations of 4-aminopyridine (4-AP) led to spike broadening and facilitation of the nondepressed sensorimotor connections, indicating that spike broadening via the reduction of I$\sc{K,V}$ can facilitate the synaptic connection. Further analyses, however, revealed that 4-AP-induced facilitation has qualitative differences from 5-HT- and PKC-induced facilitation. These results suggest that 5-HT- and PKC-induced facilitation of nondepressed synapses is mediated, at least in part, by spike-duration independent (SDI) processes. Under certain conditions, the PKC inhibitor, staurosporine, significantly inhibited the 5-HT-induced facilitation of sensorimotor connections.^ Finally, it was found that activation of PKC increased a basal level of cAMP and that PKC caused desensitization of the 5-HT receptor, which may be a possible negative feedback mechanism through which an extracellular ligand, 5-HT, is regulated. These results suggest that these two second messenger/protein kinase pathways can interact in the sensory neuron. Thus, neuronal plasticity that may contribute to learning and memory appears to involve several complex and interactive processes. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

$\rm\underline{L}$ong-$\rm\underline{t}$erm $\rm\underline{p}$otentiation (LTP) is a candidate cellular mechanism underlying mammalian learning and memory. Protocols that induce LTP typically involve afferent stimulation. The experiments described in this dissertation tested the hypothesis that LTP induction does not require presynaptic activity. The significance of this hypothesis is underscored by results suggesting that LTP expression may involve activity-dependent presynaptic changes. An induction protocol using glutamate iontophoresis was developed that reliably induces LTP in hippocampal slices without afferent stimulation (ionto-LTP). Ionto-LTP is induced when excitatory postsynaptic potentials are completely blocked with adenosine and $\rm\underline{t}$etrodo$\rm\underline{t}$o$\rm\underline{x}$in (TTX). These results suggest constraints on the involvement of presynaptic mechanisms and putative retrograde messengers in LTP induction and expression; namely, these processes must function without many forms of activity-dependent presynaptic processes.^ In testing the role of pre-and postsynaptic mechanisms in LTP expression whole-cell recordings were used to examine the frequency and amplitude of $\rm\underline{s}$pontaneous $\rm\underline{e}$xcitatory $\rm\underline{p}$o$\rm\underline{s}$ynaptic $\rm\underline{c}$urrents (sEPSCs) in CA1 pyramidal neurons. sEPSCs where comprised of an equal mixture of TTX insensitive miniature EPSCs and sEPSCs that appeared to result from spontaneous action potentials (i.e., TTX sensitive EPSCs). The detection of all sEPSCs was virtually eliminated by CNQX, suggesting that sEPSCs were glutamate mediated synaptic events. Changes in the amplitude and frequency sEPSCs were examined during the expression of ionto-LTP to obtain new information about the cellular location of mechanisms involved in synaptic plasticity. The findings of this dissertation show that ionto-LTP expression results from increased sEPSC amplitude in the absence of lasting increases in sEPSC frequency. Potentiation of sEPSC amplitude without changes in sEPSC frequency has been previously interpreted to be due to postsynaptic mechanisms. Although this interpretation is supported by findings from peripheral synapses, its application to the central nervous system is unclear. Therefore, alternative mechanisms are also considered in this dissertation. Models based on increased release probability for action potential dependent transmitter release appear insufficient to explain our results. The most straightforward interpretation of the results in this dissertation is that LTP induced by glutamate iontophoresis on dendrites of CA1 pyramidal neurons is mediated by postsynaptic mechanisms. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Retinal ganglion cells carry signals from the eye to the brain. One of the most common types of ganglion cells is parasol cells. They have larger dendritic trees, somas and axons than other ganglion cells. While much was known about parasol cell light responses, little was known about how these responses are formed. One possibility is that they receive input from a unique set of local circuit neurons that have similar responses. The goal was to identify these presynaptic neurons and study their synaptic connectivity.^ Ganglion cells receive input from bipolar and amacrine cells, but there are numerous subtypes of each. To determine which of these were most likely to provide input to parasol cells, the parasol cells were intracellularly-injected and then various bipolar and amacrine cells were immunolabeled and the tissue analyzed using a confocal microscope. DB3 bipolar cells labeled with antibodies to calbindin made extensive contacts with OFF parasol cells. Antibodies to recover in labeled flat midget bipolar cells (FMB). They made only random contacts with OFF parasol cells, and they are not expected to provide significant input. Type DB2 bipolar cells and FMB cells labeled with antibodies to excitatory amino acid transporter-2 made extensive contacts with OFF parasol cells. This suggests that DB2 bipolar cells are likely to provide input to parasol cells.^ Two types of amacrine cells were labeled in material containing injected parasol cells. Cholinergic amacrine cells were labeled with antibodies to choline acetyltransferase, and they made extensive contacts with ON parasol cells. The large amacrine cells labeled with antibodies to a precursor of cholecystokinin were among the amacrine cells that are tracer-coupled to parasol cells.^ From electron microscopic (EM) analysis, most of the synapses made by DB3 axons were found on varicosities. Some postsynaptic and presynaptic amacrine cells resembled AII amacrine cells. Others were relatively electron-lucent and may be cholinergic amacrine cells or cholecystokinin-containing amacrine cells. Gap junctions were found between neighboring DB3 axons. They occurred whenever two axons contacted each other, and the junctions were as large as the area of contact. In double-label EM experiments, DB3 axons made synapses onto OFF parasol cells. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An important goal in the study of long-term memory is to understand the signals that induce and maintain the underlying neural alterations. In Aplysia, long-term sensitization of defensive reflexes has been examined in depth as a simple model of memory. Extensive studies of sensory neurons (SNs) in Aplysia have led to a cellular and molecular model of long-term memory that has greatly influenced memory research. According to this model, induction of long-term memory in Aplysia depends upon serotonin (5-HT) release and subsequent activation of the cAMP-PKA pathway in SNs. The evidence supporting this model mainly came from studies of long-term synaptic facilitation (LTF) using dissociated (and therefore axotomized) cells growing in culture. However, studies in more intact preparations have produced complex and discrepant results. Because these SNs function as nociceptors, and display similar alterations (long-term hyperexcitability [LTH], LTF, and growth) in models of memory and nerve injury, this study examined the roles of 5-HT and the cAMP-PKA pathway in the induction and expression of long-term, injury-related LTH and LTF in Aplysia SNs. ^ The results presented here suggest that 5-HT is not a primary signal for inducing LTH (and perhaps LTF) in Aplysia SNs. Prolonged treatment with 5-HT failed to induce LTH of Aplysia SNs in either ganglia or dissociated-cell preparations. Treatment with a 5-HT antagonist, methiothepin, during noxious nerve stimulation failed to reduce 24 hr LTH. Furthermore, while 5-HT can induce LTF of SN synapses, this LTF appears to be an indirect effect of 5-HT on other cells. When neural activity was suppressed by elevating divalent cations or by using tetrodotoxin (TTX), 5-HT failed to induce LTF. Unlike LTF, LTH of the SNs could not be produced, even when 5-HT treatment occurred in normal artificial sea water (ASW), suggesting that LTH and LTF are likely to depend on different signals for induction. However, methiothepin reduced the later expression of LTH induced by nerve stimulation, suggesting that 5-HT contributes to the maintenance of LTH in Aplysia SNs.n of somata from the ganglion (which axotomizes SNs) or crushing peripheral n. ^ In summary, this study found that 5-HT and the cAMP-PKA pathway are not involved in the induction of long-term, injury-related LTH of Aplysia SNs, but persistent release of 5-HT and persistent PKA activity contribute to the maintenance of LTH induced by injury. (Abstract shortened by UMI.)^