22 resultados para Sequence Homology, Amino Acid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aniridia (AN) is a congenital, panocular disorder of the eye characterized by the complete or partial absence of the iris. The disease can occur in both the sporadic and familial forms which, in the latter case, is inherited as an autosomal dominant trait with high penetrance. The objective of this study was to isolate and characterize the genes involved in AN and Sey, and thereby to gain a better understanding of the molecular basis of the two disorders.^ Using a positional cloning strategy, I have approached and cloned from the AN locus in human chromosomal band 11p13 a cDNA that is deleted in two patients with AN. The deletions in these patients overlap by about 70 kb and encompass the 3$\sp\prime$ end of the cDNA. This cDNA detects a 2.7 kb mRNA encoded by a transcription unit estimated to span approximately 50 kb of genomic DNA. The message is specifically expressed in all tissues affected in all forms of AN, namely within the presumptive iris, lens, neuroretina, the superficial layers of the cornea, the olfactory bulbs, and the cerebellum. Sequence analysis of the AN cDNA revealed a number of motifs characteristic of certain transcription factors. Chief among these are the presence of the paired domain, the homeodomain, and a carboxy-terminal domain rich in serine, threonine and proline residues. The overall structure shows high homology to the Drosophila segmentation gene paired and members of the murine Pax family of developmental control genes.^ Utilizing a conserved human genomic DNA sequence as probe, I was able to isolate an embryonic murine cDNA which is over 92% homologous in nucleotide sequence and virtually identical at the amino acid level to the human AN cDNA. The expression pattern of the murine gene is the same as that in man, supporting the conclusion that it probably corresponds to the Sey gene. Its specific expression in the neuroectodermal component of the eye, in glioblastomas, but not in the neural crest-derived PC12 pheochromocytoma cell line, suggests that a defect in neuroectodermal rather mesodermal development might be the common etiological factor underlying AN and Sey. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There have been numerous reports over the past several years on the ability of vitamin A analogs (retinoids) to modulate cell proliferation, malignant transformation, morphogenesis, and differentiation in a wide variety of cell types and organisms. Two families of nuclear retinoid-inducible, trans-acting, transcription-enhancing receptors that bear strong DNA sequence homology to thyroid and steroid hormone receptors have recently been discovered. The retinoic acid receptors (RARs) and retinoid X receptors (RXRs) each have at least three types designated $\alpha,$ $\beta,$ and $\gamma,$ which are encoded by separate genes and expressed in a tissue and cell type-specific manner. We have been interested in the mechanism by which retinoids inhibit tumor cell proliferation and induce differentiation. As a model system we have employed several murine melanoma cell lines (S91-C2, K1735P, and B16-F1), which are sensitive to the growth-inhibitory and differentiation-inducing effects of RA, as well as a RA-resistant subclone of one of the cell lines (S91-C154), in order to study the role of the nuclear RARs in these effects. The initial phase of this project consisted of the characterization of the expression pattern of the three known RAR and RXR types in the murine melanoma cell lines in order to determine whether any differences exist which may elucidate a role for any of the receptors in RA-induced growth inhibition and differentiation. The novel finding was made that the RAR-$\beta$ gene is rapidly induced from undetectable levels by RA treatment at the mRNA and protein level, and that the induction of RAR-$\beta$ by other biologically active retinoids correlated with their ability to inhibit the growth of the highly RA-sensitive S91-C2 cell line. This suggests a role for RAR-$\beta$ in the growth inhibiting effect of retinoids. The second phase of this project involves the stable expression of RAR-$\beta$ in the S91-C2 cells and the RAR-$\beta$ receptor-null cell line, K1735P. These studies have indicated an inverse correlation between RAR-$\beta$ expression and proliferation rate. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heparan sulfate proteoglycans and their corresponding binding sites have been suggested to play an important role during the initial attachment of blastocysts to uterine epithelium and human trophoblastic cell lines to uterine epithelial cell lines. Previous studies on RL95 cells, a human uterine epithelial cell line, characterized a single class of cell surface heparin/heparan sulfate (HP/HS)-binding sites. Three major HP/HS-binding peptide fragments were isolated from RL95 cell surfaces by tryptic digestion and partial amino-terminal amino acid sequence from each peptide fragment was obtained. In the current study, using the approaches of reverse transcription-polymerase chain reaction and cDNA library screening, a novel cell surface $\rm\underline{H}$P/HS $\rm\underline{i}$nteracting $\rm\underline{p}$rotein (HIP) has been isolated from RL95 cells. The full-length cDNA of HIP encodes a protein of 259 amino acids with a calculated molecular weight of 17,754 Da and pI of 11.75. Transfection of HIP cDNA into NIH-3T3 cells demonstrated cell surface expression and a size similar to that of HIP expressed by human cells. Predicted amino acid sequence indicates that HIP lacks a membrane spanning region and has no consensus sites for glycosylation. Northern blot analysis detected a single transcript of 1.3 kb in both total RNA and poly(A$\sp+$) RNA. Examination of human cell lines and normal tissues using both Northern blot and Western blot analysis revealed that HIP is differentially expressed in a variety of human cell lines and normal tissues, but absent in some cell lines examined. HIP has about 80% homology, at the level of both mRNA and protein, to a rodent protein, designated as ribosomal protein L29. Thus, members of the L29 family may be displayed on cell surfaces where they participate in HP/HS binding events. Studies on a synthetic peptide derived from HIP demonstrate that HIP peptide binds HS/HP with high selectivity and has high affinity (Kd = 10 nM) for a subset of polysaccharides found in commercial HIP preparations. Moreover, HIP peptide also binds certain forms of cell surface, but not secreted or intracellular. HS expressed by RL95 and JAR cells. This peptide supports the attachment of several human trophoblastic cell lines and a variety of mammalian adherent cell lines in a HS-dependent fashion. Furthermore, studies on the subset of HP specifically recognized by HIP peptide indicate that this high-affinity HP (HA-HP) has a larger median MW and a greater negative charge density than bulk HP. The minimum size of oligosaccharide required to bind to HIP peptide with high affinity is a septa- or octasaccharide. HA-HP also quantitatively binds to antithrombin-III (AT-III) with high affinity, indicating that HIP peptide and AT-III may recognize the same or similar oligosaccharide structure(s). Furthermore, HIP peptide antagonizes HP action and promotes blood coagulation in both factor Xa- and thrombin-dependent assays. Finally, HA-HP recognized by HP peptide is highly enriched with anticoagulant activity relative to bulk HP. Collectively, these results demonstrate that HIP may play a role in the HP/HS-involved cell-cell and cell-matrix interactions and recognizes a motif in HP similar or identical to that recognized by AT-III and therefore, may modulate blood coagulation. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ERCC1 (Excision Repair Cross-Complementing-1) gene is the presumptive mammalian homolog of the Saccharomyces cerevisiae RAD10 gene. In mammalian NER, the Ercc1/XpF complex functions as an endonuclease that specifically recognizes 5$\sp\prime$ double-strand-3$\sp\prime$ single-strand structures. In yeast, the analogous function is performed by the Rad1/Rad10 complex. These observations and the conservation of amino acid homology between the Rad1 and XpF and the Rad10 and Ercc1 proteins has led to a general assumption of functional homology between these genes.^ In addition to NER, the Rad1/Rad10 endonuclease complex is also required in certain specialized mitotic recombination pathways in yeast. However, a similiar requirement for the endonuclease function of the Ercc1/XpF complex during genetic recombination in mammalian cells has not been directly demonstrated. The experiments performed in these studies were designed to determine if ERCC1 deficiency would produce recombination-deficient phenotypes in CHO cells similar to those observed in RAD10 deletion mutants, including: (1) decreased single-reciprocal exchange recombination, and (2) inability to process 5$\sp\prime$ sequence heterology in recombination intermediates.^ Specifically, these studies describe: (1) The isolation and characterization of the ERCC1 locus of Chinese hamster ovary cells; (2) The production of an ERCC1 null mutant cell line by targeted knock-out of the endogenous ERCC1 gene in a Chinese hamster ovary cell line, CHO-ATS49tg, which contains an endogenous locus, APRT, suitable as a chromosomal target for homologous recombination; (3) The characterization of mutant ERCC1 alleles from a panel of Chinese hamster ovary cell ERCC1 mutants derived by conventional mutagenesis; (4) An investigation of the effects of ERCC1 mutation on mitotic recombination through targeting of the APRT locus in an ERCC1 null background.^ The results of these studies strongly suggest that the role of ERCC1 in homologous recombination in mammalian cells is analogous to that of the yeast RAD10 gene. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retinoids such as all-trans-retinoic acid (ATRA) are promising agents for cancer chemoprevention and therapy. ATRA can cause growth inhibition, induction of differentiation and apoptosis of a variety of cancer cells. These effects are thought to be mediated by nuclear retinoids receptors which are involved in ligand-dependent transcriptional activation of downstream target genes. Using differential display, we identified several retinoic acid responsive genes in the head and neck squamous carcinoma cells and lung cancer cells, including tissue type transglutaminase, cytochrome P450-related retinoic acid hydroxylase, and a novel gene, designated RAIG1. RAIG1 has two transcripts of 2.4 and 6.8 kbp, respectively, that are generated by alternative selection of polyadenylation sites. Both transcripts have the same open reading frame that encodes a protein comprised of 357 amino acid residues. The deduced RAIG1 protein sequence contains seven transmembrane domains, a signature structure of G protein-coupled receptors. RAIG1 mRNA is expressed at high level in fetal and adult lung tissues. Induction of RAIG1 expression by ATRA is rapid and dose-dependent. A fusion protein of RAIG1 and the green fluorescent protein was localized in the cell surface membrane and perinuclear vesicles in transiently transfected cells. The locus for RAIG1 gene was mapped to a region between D12S358 and D12S847 on chromosome 12p12.3-p13. Our study of the novel retinoic acid induced gene RAIG1 provide evidence for a possible interaction between retinoid and G protein signaling pathways.^ We further examined RAIG1 expression pattern in a panel of 84 cancer cell lines of different origin. The expression level varies greatly from very high to non-detectable. We selected a panel of different cancer cells to study the effects of retinoids and other differentiation agents. We observed: (1) In most cases, retinoids (including all-trans retinoic acid, 4HPR, CD437) could induce the expression of RAIG-1 in cells from cancers of the breast, colon, head and neck, lung, ovarian and prostate. (2) Compare to retinoids, butyrate is often a more potent inducer of RAIG-1 expression in many cancer cells. (3) Butyrate, Phenylacetate butyrate, (R)P-Butyrate and (S)P-Butyrate have different impact on RAIG1 expression which varies among different cell lines. Our results indicate that retinoids could restore RAIG1 expression that is down-regulated in many cancer cells.^ A mouse homologous gene, mRAIG1, was cloned by 5$\sp\prime$ RACE reaction. mRAIG1 cDNA has 2105 bp and shares 63% identity with RAIG1 cDNA. mRAIG1 encodes a polypeptide of 356 amino acid which is 76% identity with RAIG1 protein. mRAIG1 protein also has seven transmembrane domains which are structurally identical to those of RAIG1 protein. Only one 2.2 kbp mRAIG1 transcript could be detected. The mRAIG1 mRNA is also highly expressed in lung tissue. The expression of mRAIG1 gene could be induced by ATRA in several mouse embryonal carcinoma cells. The induction of mRAIG1 expression is associated with retinoic acid-induced neuroectoderm differentiation of P19 cells. Similarity in cDNA and protein sequence, secondary structure, tissue distribution and inducible expression by retinoic acid strongly suggest that the mouse gene is the homologue of the human RAIG1 gene. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sigma (σ) subunit of eubacterial RNA polymerase (RNAP) is required for specific recognition of promoter DNA sequences and transcription initiation. Regulation of bacterial gene expression can be achieved by modulating a factor activity. The Bacillus subtilis sporulation a σ factor, σ K, controls gene expression of the late sporulation regulon. σ K is synthesized as an inactive precursor protein, pro-σ K, with a 20 amino acid pro sequence. Proteolytic processing of the pro sequence produces the active form, σK, which is able to bind to the core subunits of RNAP to direct gene expression. Thus, the pro sequence renders σK inactive in vivo. After processing, the amino terminus of σK consists of region 1.2, which is conserved among various σ factors. To understand the role of the amino terminus of σK, namely the pro sequence and region 1.2, mutagenesis of both regions was pursued. NH 2-terminal truncations of pro-σK were constructed to address how the pro sequence silences σK activity. The work described here shows that the pro sequence inhibits the ability of σ K to associate with the core subunits and that a deletion of only six amino acids of the pro sequence is sufficient to activate pro-σ K for DNA binding and transcription initiation to levels similar to σ K. Additionally, site directed mutagenesis was used to obtain single amino acid substitutions in region 1.2 to address the role of region 1.2 in σ K transcriptional activity. Two mutations were isolated, converting a lysine (K) to an alanine (A) at position three, and an asparagine (N) to a tyrosine (Y) at position five, both of which alter the efficiency of transcription initiation by RNAP containing the mutant σKs. Surprisingly, σ KK3A increased transcript production when compared to wild type. This increase is due to improvement in DNA affinity and increased stability of RNAP-DNA promoter open complexes. σKN5Y showed a decrease in transcription activity that is related to defects in the ability of RNAP to make the transition from the closed to open RNAP-DNA complex. Results of both the pro sequence and region 1.2 analyses indicate that the amino terminus of σK is important for transcription activity and this work adds to the increasing body of evidence that the amino termini of many σ factors modulate transcription initiation by RNAP. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One full length cDNA clone, designated 3aH15, was isolated from a rat brain cDNA library using a fragment of CYP3A2 cDNA as a probe. 3aH15 encoded a protein composed of 503 amino acid residues. The deduced amino acid sequence of 3aH15 was 92% identical to mouse Cyp3a-13 and had a 68.4% to 76.5% homology with the other reported rat CYP3A sequences. Clone 3aH15 was thus named CYP3A9 by Cytochrome P450 Nomenclature Committee. CYP3A9 seems to the major CYP3A isozyme expressed in rat brain. Sexual dimorphism of the expression of CYP3A9 was shown for the first time in rat brain as well as in rat liver. CYP3A9 appears to be female specific in rat liver based on the standards proposed by Kato and Yamazoe who defined sex specific expression of P450s as being a 10-fold or higher expression level in one sex compared with the other. CYP3A9 gene expression was inducible by estrogen treatment both in male and in female rats. Male rats treated with estrogen had a similar expression level of CYP3A9 mRNA both in the liver and brain. Ovariectomy of adult female rats drastically reduced the mRNA level of CYP3A9 which could be fully restored by estrogen replacement. On the other hand, only a two-fold induction of CYP3A9 expression by dexamethasone was observed in male liver and no significant induction of CYP3A9 mRNA was observed in female liver or in the brains. These results suggest that estrogen may play an important role in the female specific expression of the CYP3A9 gene and that CYP3A9 gene expression is regulated differently from other CYP3A isozymes. ^ P450 3A9 recombinant protein was expressed in E. coli using the pCWOri+ expression vector and the MALLLAVF amino terminal sequence modification. This construct gave a high level of expression (130 nmol P450 3A9/liter culture) and the recombinant protein of the modified P450 3A9 was purified to electrophoretic homogeneity (10.1 nmol P450/mg protein) from solubilized fractions using two chromatographic steps. The purified P450 3A9 protein was active towards the metabolism of many clinically important drugs such as imipramine, erythromycin, benzphetamine, ethylmorphine, chlorzoxazone, cyclosporine, rapamycin, etc. in a reconstituted system containing lipid and rat NADPH-P450 reductase. Although P450 3A9 was active towards the catabolism of testosterone, androstenedione, dehydroepiandrosterone (DHEA) and 17β-estradiol, P450 3A9 preferentially catalyzes the metabolism of progesterone to form four different hydroxylated products. Optimal reconstitution conditions for P450 3A9 activities required a lipid mixture and GSH. The possible mechanisms of the stimulatory effects of GSH on P450 3A9 activities are discussed. Sexually dimorphic expression of P450 3A9 in the brain and its involvement in many neuroactive drugs as well as neurosteroids suggest the possible role of P450 3A9 in some mental disorders and brain functions. ^