39 resultados para Recurrent Malignant Glioma


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Total restorative proctocolectomy with ileal pouch-anal anastomosis (RP/IPAA) has become the standard of care for the surgical treatment of ulcerative colitis. Despite its correlation with an excellent quality of life and favorable long-term outcomes, RP/IPAA has been associated with several complications. Prolapse of the ileoanal pouch is a rare and debilitating complication that should be considered in the differential diagnosis of pouch failure. Limited data exist regarding the prevalence and treatment of pouch prolapse. We present the case of a recurrent J-pouch prolapse treated with a novel minimally invasive "salvage" approach involving a robotic-assisted laparoscopic rectopexy with mesh.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Loss of chromosome 10 represents the most common cytogenetic abnormality in high grade gliomas (glioblastoma multiforme). To identify genes involved in the malignant progression of human gliomas, a subtractive hybridization was performed between a tumorigenic glioblastoma cell line (LG11) and a nontumorgenic hybrid cell (LG11.3) containing an introduced chromosome 10. LG11 mRNA was subtracted from LG11.3 cDNA to produce cDNA probes enriched for sequences whose expression differs quantitatively from the parental tumorigenic cells. Both known and novel sequences were identified as a result of the subtraction. Northern blot analysis was then used to confirm differential expression of several subtracted clones. One novel clone, clone 17, identified a 2.6 kb message that showed a consistent two to four fold increase in expression in the LG11.3 nontumorigenic cells. Clone 17 (340 bp) was used successfully to screen for a near full-length version, RIG (regulated in glioma), which was 2,569 bp in size. The RIG cDNA sequence showed homology to clone 17 and to an anonymous EST (IB666), but to no previously identified genes. This screening effort also identified several independent clones representing novel sequences, most of which failed to show increased expression in the nontumorigenic GBM cells. Tissue distribution studies of RIG indicated highest levels of expression in human brain with appreciably lower levels in heart and lung. In vitro transcription and translation experiments demonstrated the ability of RIG to direct the synthesis of a 13 kD protein product. However, open reading frame analysis revealed no identify with previously described motifs or any known proteins. Using a combination of somatic cell hybrid panels and in situ hybridization, the RIG gene was mapped to chromosome 11p14-11p15. Further study of RIG and related gene products may provide insight into the negative regulation of glial oncogenesis. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cytochrome P450 monooxygenase system consists of NADPH- cytochrome P450 reductase (P450 reductase) and cytochromes P450, which can catalyze the oxidation of a wide variety of endogenous and exogenous compounds, including steroid hormones, fatty acids, drugs, and pollutants. The functions of this system are as diverse as the substrates. P450 reductase transfers reducing equivalents from NADPH to P450, which in turn catalyzes metabolic reactions. This enzyme system has the highest level of activity in the liver. It is also present in other tissues, including brain. The functions of this enzyme system in brain seem to include: neurotransmission, neuroendocrinology, developmental and behavioral modulation, regulation of intracellular levels of cholesterol, and potential neurotoxicity.^ In this study, we have set up the rat glioma C6 cell line as an in vitro model system to examine the expression, induction, and tissue-specific regulation of P450s and P450 reductase. Rat glioma C6 cells were treated with P450 inducers phenobarbital (PB) or benzo(a)anthracene (BA). The presence of P450 reductase and of cytochrome P450 1A1, 1A2, 2A1, 2B1/2, 2C7, 2D1-5 and 2E1 was detected by reverse transcription followed by polymerase chain reaction (RT-PCR) and confirmed by restriction digestion. The induction of P450 1A1 and 2B1/2 and P450 reductase was quantified using competitive PCR. Ten- and five-fold inductions of P450 1A and 2B mRNA after BA or PB treatments, respectively, were detected. Western blot analysis of microsomal preparations of glioma C6 cells demonstrated the presence of P450 1A, 2B and P450 reductase at the protein level. ELISAs showed that BA and PB induce P450 1A and 2B proteins 7.3- and 13.5-fold, respectively. Microsomes prepared from rat glioma C6 cells showed cytochrome P450 CO difference spectra with absorption at or near 450 nm. Microsomes prepared from rat glioma C6 cells demonstrated much higher levels of ethoxyresorufin O-deethylase (EROD) and pentoxyresorufin O-dealkylase (PROD) activity, when treated with BA or PB, respectively. These experiments provide further evidence that the rat glioma C6 cell line contains an active cytochrome P450 monooxygenase system which can be induced by P450 inducers. The mRNAs of P450 1A1 and 2B1/2 can not bind to the oligo(dT) column efficiently, indicating they have very short poly(A) tails. This finding leads us to study the tissue specific regulation of P450s at post-transcriptional level. The half lives of P450 1A1 and 2B1/2 mRNA in glioma C6 cells are only 1/10 and 1/3 of that in liver. This may partly contribute to the low expression level of P450s in glial cells. The induction of P450s by BA or PB did not change their mRNA half lives, indicating the induction may be due to transcriptional regulation. In summary of this study, we believe the presence of the cytochrome P450 monooxygenase system in glial cells of the brain may be important in chemotherapy and carcinogenesis of brain tumors. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analysis of recurrent events has been widely discussed in medical, health services, insurance, and engineering areas in recent years. This research proposes to use a nonhomogeneous Yule process with the proportional intensity assumption to model the hazard function on recurrent events data and the associated risk factors. This method assumes that repeated events occur for each individual, with given covariates, according to a nonhomogeneous Yule process with intensity function λx(t) = λ 0(t) · exp( x′β). One of the advantages of using a non-homogeneous Yule process for recurrent events is that it assumes that the recurrent rate is proportional to the number of events that occur up to time t. Maximum likelihood estimation is used to provide estimates of the parameters in the model, and a generalized scoring iterative procedure is applied in numerical computation. ^ Model comparisons between the proposed method and other existing recurrent models are addressed by simulation. One example concerning recurrent myocardial infarction events compared between two distinct populations, Mexican-American and Non-Hispanic Whites in the Corpus Christi Heart Project is examined. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cutaneous malignant melanoma (CMM) is the cancer of the melanocytes, the cells that produce the pigment melanin, and is an aggressive skin cancer that is most prevalent in the white population. Although most cases of malignant melanoma are white, black and other non-white populations also develop this disease. However, the etiologic factors involved in the development of melanoma in these lower-risk populations are not well known. Generally, survival rates of malignant melanoma have been found to be lower in blacks than for whites with similar stage of disease at diagnosis. ^ This study presents an analysis of the differences in survival between black and white cases with malignant melanoma of the skin as the only or first primary cancer, found in the National Cancer Institute Surveillance, Epidemiology and End Results (SEER) cancer registry from 1973 to 1997. A total of 54,193 cases of CMM were diagnosed in black and white patients between 1973 and 1997. Black patients tended to be older, with a mean age of 64.46 years, compared to 53.14 years for white patients. Eighty-nine percent of patients were diagnosed with CMM as the only cancer. (Abstract shortened by UMI.)^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing evidence demonstrates that the thrombin receptor (protease activated receptor-1, PAR-1) plays a major role in tumor invasion and contributes to the metastatic phenotype of human melanoma. We demonstrate that the metastatic potential of human melanoma cells correlates with overexpression of PAR-1. The promoter of the PAR-1 gene contains multiple putative AP-2 and Sp1 consensus elements. We provide evidence that an inverse correlation exists between the expression of AP-2 and the expression of PAR-1 in human melanoma cells. Re-expression of AP-2 in WM266-4 melanoma cells (AP-2 negative) resulted in decreased mRNA and protein expression of PAR-1 and significantly reduced the tumor potential in nude mice. ChIP analysis of the PAR-1 promoter regions bp −365 to −329 (complex 1) and bp −206 to −180 (complex 2) demonstrates that in metastatic cells Sp1 is predominantly binding to the PAR-1 promoter, while in nonmetastatic cells AP-2 is bound. In vitro analysis of complex 1 demonstrates that AP-2 and Sp1 bind to this region in a mutually exclusive manner. Transfection experiments with full-length and progressive deletions of the PAR-1 promoter luciferase constructs demonstrated that metastatic cells had increased promoter activity compared to low and nonmetastatic melanoma cells. Our data shows that exogenous AP-2 expression decreased promoter activity, while transient expression of Sp1 further activated expression of the reporter gene. Mutational analysis of complex 1 within PAR-1 luciferase constructs further demonstrates that the regulation of PAR-1 is mediated through interactions with AP-2 and Sp1. Moreover, loss of AP-2 in metastatic cells alters the AP-2 to Sp1 ratio and DNA-binding activity resulting in overexpression of PAR-1. In addition, we evaluated the expression of AP-2 and PAR-1 utilizing a tissue microarray of 93 melanocytic lesions spanning from benign nevi to melanoma metastasis. We report loss of AP-2 expression in malignant tumors compared to benign tissue while PAR-1 was expressed more often in metastatic melanoma cells than in benign melanocytes. We propose that loss of AP-2 results in increased expression of PAR-1, which in turn results in upregulation of gene products that contribute to the metastatic phenotype of melanoma. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insulin-like growth factor binding protein 2 (IGFBP2) is a protein known to be overexpressed in a majority of glioblastoma multiforme (GBM) tumors. While it is known the IGFBP2 is involved in promoting GBM tumor cell invasion, no mechanism exists for how the protein is involved in signal transduction pathways leading to enhanced cell invasion. ^ We follow up on preliminary microarray data on IGFBP2-overexpressing GBM cells and protein sequence analysis of IGFBP2 in generating the hypothesis that IGFBP2 interacts with integnn α5 in regulating cell mobility. Microarray data showing upregulation of integrin α5 by IGFBP2 is validated and evidence of protein-protein interaction between IGFBP2 and integrin α5 is found. The exact binding domain on IGFBP2 responsible for its interaction with integrin α5 is also determined, confirming our initial findings and reaffirming that the IGFBP2/integrin α5 interaction is specific. Disruption of this interaction resulted in attenuation of IGFBP2-enhanced cell mobility. Further, we found that cell mobility is only enhanced when IGFBP2 and integrin α5 are both overexpressed and able to interact with each other. ^ We also determined fibronectin to be a critical player in the activation of the IGFBP2/integrin α5 pathway. The activation of this pathway appears to be progressive and initiates once GBM cells have sufficiently established anchorage. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Overexpression of insulin-like growth factor binding protein 2 (IGFBP2) is associated with progression and poor survival in many types of human cancer (such as prostate, ovarian, adrenocortical, breast, colorectal carcinomas, leukemia, and high-grade gliomas). We therefore hypothesize that IGFBP2 is a key regulator of tumor progression. We tested our hypothesis in gliomas using the somatic gene transfer RCAS-tva mouse model system, which permits the introduction of specific genes into specific, cell lineages, in this case glial cells (RCAS: Replication competent avian sarcomavirus, tv-a: avian RCAS virus receptor). Mice are transgenic and harbor the tv-a receptor under the control of a glial-specific promoter and study genes are cloned into the RCAS vector for post-natal intracranial delivery. For these experiments, the study genes were IGFBP2, platelet-derived growth factor B (PDGFB), K-Ras, Akt, and IIp45 (invasion inhibitory protein 45 kDa; known to bind and block IGFBP2 activity), which were delivered separately and in combination. Our results show that PDGFB signaling leads exclusively to the formation of low-grade (WHO grade II) oligodendrogliomas. PDGFB delivered in combination with IGFBP2 results in the formation of anaplastic oligodendrogliomas (WHO grade III), which are characterized by increased cellularity, vascular proliferation, small regions of necrosis, increased mitotic activity, and increased activation of the Akt pathway. IIp45 injected in combination with PDGFB and IGFBP2 ablates IGFBP2-induced tumor progression, which results in formation of low-grade oligodendrogliomas, and an overall reduction in tumor incidence. K-Ras expression was required to form astrocytomas with either IGFBP2 or Akt, indicating the activation of two separate pathways is necessary for gliomagenesis. In ex vivo experiments, blockade of Akt by an inhibitor led to decreased viability of cells co-expressing IGFBP2 versus PDGFB expression alone. This study provides definitive evidence, for the first time, that: (1) IGFBP2 plays a role in activation of the Akt pathway, (2) IGFBP2 collaborates with K-Ras or PDGFB in the development and progression of two major types of glioma, and (3) IGFBP2-induced tumor progression can be ablated by IIp45 or by specific inhibition of the Akt pathway. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alternative RNA splicing plays an integral role in cell fate determination and function, especially in the cells of the brain. Errors in RNA processing contribute to diseases such as cancer, where it leads to the production of oncogenic proteins or the loss of tumor suppressors. In silica mining suggests that hundreds of splice isoforms are misexpressed in the glial cell-derived glioma. However, there is little experimental evidence of the prevalence and contribution of these changes and whether they contribute to the formation and progression of this devastating malignancy. To determine the frequency of these aberrant events, global profiling of alternative RNA splice patterns in glioma and nontumor brain was conducted using an exon array. Most splicing changes were less than 5-fold in magnitude and 14 cassette exon events were validated, including 7 previously published events. To determine the possible causes of missplicing, the differential expression levels of splicing factors in these two tissues were also analyzed. Six RNA splicing factors had greater than 2-fold changes in expression. The highest differentially expressed factor was polypyrimidine tract binding protein-1 (PTB). Evaluation by immunohistochemistry determined that this factor was elevated in both early and late stages of glioma. Glial cell-specific PTB expression in the adult brain led me to examine the role of PTB in gliomagenesis. Downregulation of PTB slowed glioma cell proliferation and migration and enhanced cell adhesion to fibronectin and vitronectin. To determine whether PTB was affecting these processes through splicing, genome-wide exon expression levels were correlated with PTB levels. Surprisingly, previously reported PTB target transcripts were insensitive to changes in PTB levels in both patient samples and PTB-depleted glioma cells. Only one validated glioma-specific splice target, RTN4/Nogo, had a significant PTB-mediated splicing change. Downregulation of PTB enhanced inclusion of its alternative exon 3, which encodes an auxiliary domain within a neurite inhibitor protein. Overexpression of this splice isoform in glioma cells slowed proliferation in a manner similar to that observed in PTB knockdown cells. In summary, aberrant expression of splicing factors such as PTB in glioma may elicit changes in splicing patterns that enhance tumorigenesis. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. Cardiac tamponade can occur when a large amount of fluid, gas, singly or in combination, accumulating within the pericardium, compresses the heart causing circulatory compromise. Although previous investigators have found the 12-lead ECG to have a poor predictive value in diagnosing cardiac tamponade, very few studies have evaluated it as a follow up tool for ruling in or ruling out tamponade in patients with previously diagnosed malignant pericardial effusions. ^ Methods. 127 patients with malignant pericardial effusions at the MD Anderson Cancer Center were included in this retrospective study. While 83 of these patients had a cardiac tamponade diagnosed by echocardiographic criteria (Gold standard), 44 did not. We computed the sensitivity (Se), specificity (Sp), positive (PPV) and negative predictive values (NPV) for individual and combinations of ECG abnormalities. Individual ECG abnormalities were also entered singly into a univariate logistic regression model to predict tamponade. ^ Results. For patients with effusions of all sizes, electrical alternans had a Se, Sp, PPV and NPV of 22.61%, 97.61%, 95% and 39.25% respectively. These parameters for low voltage complexes were 55.95%, 74.44%, 81.03%, 46.37% respectively. The presence of all three ECG abnormalities had a Se = 8.33%, Sp = 100%, PPV = 100% and NPV = 35.83% while the presence of at least one of the three ECG abnormalities had a Se = 89.28%, Sp = 46.51%, PPV = 76.53%, NPV = 68.96%. For patients with effusions of all sizes electrical alternans had an OR of 12.28 (1.58–95.17, p = 0.016), while the presence of at least one ECG abnormality had an OR of 7.25 (2.9–18.1, p = 0.000) in predicting tamponade. ^ Conclusions. Although individual ECG abnormalities had low sensitivities, specificities, NPVs and PPVs with the exception of electrical alternans, the presence of at least one of the three ECG abnormalities had a high sensitivity in diagnosing cardiac tamponade. This could point to its potential use as a screening test with a correspondingly high NPV to rule out a diagnosis of tamponade in patients with malignant pericardial effusions. This could save expensive echocardiographic assessments in patients with previously diagnosed pericardial effusions. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite extensive research, the etiology of adult glioma remains largely unknown. We sought to further explore the role of immune and genetic factors in glioma etiology using data from the Harris County Brain Tumor Study and the first U.S. genome-wide association study of glioma. First, using a case-control study design, we examined the association between adult glioma risk and surrogates of the timing and frequency of common early childhood infections, birth order and sibship size, respectively. We found that each one-unit increase in birth order was associated with a 12% decreased risk of glioma development in adulthood (OR=0.88, 95% CI=0.81-0.96); however, sibship size was not associated with adult glioma risk (OR=0.96, 95% CI=0.91-1.02). Second, we used a multi-strategic approach to explore the relationships between glioma risk, history of asthma/allergies, and 23 functional SNPs in 11 inflammation genes. We found three inflammation gene SNPs to be significantly associated with glioma risk (COX2/PTGS2 rs20417 [OR=1.41]; IL10 rs1800896 [OR=1.57]; and IL13 rs20541 [OR=0.39]). Joint effects analysis of the risk-conferring alleles of these three SNPs revealed a trend of increasing risk with increasing number of adverse alleles among those without asthma/allergies (p<0.0001). Finally, we conducted a case-only study to explore pairwise SNP-SNP interactions in immune-related pathways among a population of 1304 non-Hispanic white glioma cases. After correction for multiple comparisons, we found 279 significant SNP-SNP interactions among polymorphisms of immune-related genes, many of which have not been previously examined. Our results, cumulatively, suggest an important role for immune and genetic factors in glioma etiology and provide several new hypotheses for future studies.^