21 resultados para Recombinant Antigen


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The etiological role of enterotoxigenic E. coli (ETEC) in diarrheal diseases of man and domestic animals is firmly established. Besides the production of enterotoxins (ST and LT), ETEC produces other important virulence factors; the colonization factor antigens (CFAs). CFAs mediate the attachment of ETEC to the epithelial cells of the small intestine, and this favors colonization by the bacteria and facilitates delivery of the enterotoxins to the intestinal cells.^ The production of enterotoxin and CFA is determined by plasmids and has been found to be restricted to a select number of E. coli serotypes.^ In this work, plasmid DNA analysis was performed in twenty-three CFA/II-producing enterotoxigenic Escherichia coli strains and their spontaneous CFA/II-negative derivatives. In some cases, strains lost the high molecular weight plasmid and also the ability to produce CFA/II, ST and LT. In other cases there was a deletion of the plasmid, which produced strains that were CFA/II('-), ST('-), LT('-) or CFA/II('-), ST('+), LT('+).^ The CFA/II plasmid from strain PB-176 (06:H16:CFA/II('+), ST('+), LT('+)) was transferred by transformation into E. coli K12 with concomitant transfer of the three characteristics: CFA/II, ST and LT.^ A physical map of the prototype CFA/II:ST:LT (pMEP60) plasmid was constructed by restriction endonuclease analysis and compared to plasmids from three other CFA/II-producing strains. A CFA/II-negative (but ST and LT positive) deletion derivative of pMEP60 (pMEP30) was also included in the map. The four CFA/II plasmids analyzed had a common region of approximately 30 kilobase pairs. The toxin genes were approximately 5 kbp apart and about 20 kbp from the common region. The information given by this physical map could be of great value when constructing a clone that will express the CFA/II genes but not the toxin genes. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of studies were undertaken to analyze and compare various aspects of murine class I glycoproteins. An initial area of investigation characterized the Qa-1 alloantigens using two-dimensional gel electrophoresis. Analysis of the products of the Qa-1('b), Qa-1('c) and Qa-1('d) alleles indicated that these were distinct molecules as determined by their lack of comigration upon comparative two-dimensional gel analysis. The importance of asparagine-linked glycosylation in the cell surface expression of class I molecules was also examined. These studies employed tunicamycin, an inhibitor of N-linked glycosylation. Tunicamycin treatment of activated T lymphocytes diminished the surface expression of Qa-1 to undetectable levels; the levels of other class I molecules exhibited little or no decrease. These results indicated that N-linked glycosylation has a differential importance in the cell surface expression of various class I molecules. The molecular weight diversity of class I molecules was also investigated. Molecular weight determination of both the fully glycosylated and unglycosylated forms of H-2 and Qa/Tla region encoded molecules established that there is a significant variation in the sizes of these forms of various class I molecules. The most significant difference ((TURN)9,000 daltons) exists between the unglycosylated forms of H-2K('b) and Qa-2, suggesting that the structural organization of these two molecules may be very different. A comparative two-dimensional gel analysis of various class I glycoproteins isolated from resting and activated T and B lymphocytes indicated that class I molecules expressed on activated T cells exhibited an isoelectrophoretic pattern that was distinct from the isoelectrophoretic pattern of class I molecules expessed on the other cell populations. This difference was attributed to a lower sialic acid content of the molecules expressed on activated T cells. Analysis of cell homogenates determined that activated T cells contained a higher level of endogenous neuraminidase activity than was detected in the other populations, suggesting that this may be the basis of the lower sialic acid content. The relationship of the Qa-4 and Qa-2 alloantigens was also examined. It was established that upon mitogen activation, the expression of Qa-4 was greatly decreased, whereas Qa-2 expression was not decreased. However, an anti-Qa-2 monoclonal antibody blocked the binding of an anti-Qa-4 monoclonal antibody to resting cells. These studies established that Qa-4 is a determinant restricted to resting cells, which is closely associated on the surface with the Qa-2 molecule. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have led to the development of allochimeric class I MHC proteins as agents that effectively induce donor-specific transplantation tolerance in a rat system with or without additional immunosuppression. Within the α1-helical region of RT1.Au, an epitope that conferred immunologic tolerance was discovered. Studies presented herein were designed to test our central hypothesis that allochimeric proteins onfer tolerance in a mouse model. To test this hypothesis, portal vein (PV) injection of wild-type H2Kd and H2Dd proteins were produced in a bacterial expression system and found to specifically prolong the survival of BALB/c (H2d) heart allografts in C57BL/10 (H2b) recipients. Although a single PV injection of 50 μg α1–α 3 H2Kd alone was ineffective, 50 μg α1 –α3 alone slightly prolonged BALB/c heart allograft survivals. In contrast, the combination of 25 μg α1–α 3 H2Kd and 25 μg α1–α 3 H2Dd proteins prolonged BALB/c graft survivals to 20.2 ± 6.4 days (p < 0.004). The effect was donor-specific, since a combination of 25 μg α1–α3 H2Kd and 25 μg α1–α3 H2Dd proteins failed to affect survivals of third-party C3H (H2k k) heart allografts, namely 9.0 ± 0.0 days in treated versus 7.8 ± 0.5 days in untreated hosts. Thus, the combination of two H2K d and H2Dd proteins is more effective in prolonging allograft survival than a single protein produced in a bacterial expression system. A single PV injection (day 0) of 25 μg α1–α 2 H2Kd and 25 μg α1–α 2 H2Dd proteins to C57BL/10 mice prolonged the survival of BALB/c heart allografts to 22.4 ± 4.5 days. Within a WF to ACI rat heart allograft system, a single PV injection of 20 μg 70–77 u-RT1.Aa induced specific tolerance of allografts. This therapy could be combined with CsA to induce transplantation tolerance. However, combination of 70–77u-RT1.Aa with CTLA4Ig, rapamycin, or AG-490 effectively blocked the induction of transplantation tolerance. Tolerance generated by allochimeric protein could be adoptively transferred to naive recipients. Intragraft cytokine mRNA levels showed a bias towards a Th2-type phenotype. Additionally, studies of cytokine signaling and activation of transcription factors revealed a requirement that these pathways remain available for signaling in order for transplantation tolerance to occur. These studies suggest that the generation of regulatory cells are required for the induction of transplantation tolerance through the use of allochimeric proteins. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spirochete Borrelia burgdorferi (Bb) is the causative agent of Lyme disease. During infection, a strong immune response is elicited towards Bb by its host; however, the organism is able to persist and to disseminate to many different tissues. The vls locus is located on the linear plasmid lp28-1, a plasmid shown to be important for virulence in the mouse model. During infection, vlsE undergoes antigenic variation through a series of gene conversions, which results in the insertion of sequences from the silent, unexpressed cassettes into the vlsE cassette. We hypothesize that this antigenic variation is important in the spirochete's ability to persist within mammals by allowing it to evade the immune system. To define the role of vls in immune evasion, the immune response against VlsE was determined by using a recombinant form of VlsE (VlsE1-His) as an antigen to screen patient sera. Lyme patients produce antibodies that recognize VlsE, and these antibodies are present throughout the course of disease. Immunization with the VlsE1-His protein provided protection against infection with Bb expressing the same variant of VlsE (VlsE1), but was only partially protective when mice were infected with organisms expressing VlsE variants; however, subsequent VlsE immunization studies yielded inconsistent protection. Successful immunizations produced different antibody reactivities to VlsE epitopes than non-protective immunizations, but the reason for this variable response is unclear. In the process of developing genetic approaches to transform infectious Bb, it was determined that the transformation barrier posed by plasmids lp25 and lp56 could be circumvented by replacing the required lp25 gene pncA. To characterize the role of vlsE in infectivity, Bb lacking lp28-1 were complemented with a shuttle plasmid containing the lp25 encoded virulence determinant pncA and vlsE. Complemented spirochetes express VlsE, but the gene does not undergo antigenic variation and infectivity in the mouse model was not restored, indicating that either antigenic variation of vlsE is necessary for survival in the mouse model or that other genes on lp28-1 are important for virulence. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Melanoma patients with metastases have a very low survival rate and limited treatment options. Therefore, the targeting of melanoma cells when they begin to invade and metastasize would be beneficial. A specific adhesion molecule that is upregulated at the vertical growth phase is the melanoma cell adhesion molecule (MCAM/MUC18). MUC18 is expressed in late primary and metastatic melanoma with little or no expression on normal melanocytes. MUC18 has been demonstrated to have a role in the progression and metastasis of human melanoma. We utilized the alphavirus-based DNA plasmid, SINCp, encoding full length human MUC18 for vaccination against B16F10 murine melanoma cells expressing human MUC18. The alphavirus-based DNA plasmid leads to the expression of large quantities of heterologous protein as well as danger signals due to dsRNA intermediates produced during viral replication. In a preventative primary tumor model and an experimental tumor model, mice vaccinated against human MUC18 had decreased tumor incidence and reduced lung metastases when challenged with B16F10 murine melanoma cells expressing human MUC18. In a therapeutic tumor model, vaccination against human MUC18 reduced the tumor burden in mice with pre-existing lung metastases but did not have a significant effect on therapeutic vaccination in a primary tumor model. We next cloned murine MUC18 into SINCp for use in determining the efficacy of vaccination against murine MUC18 in a syngeneic animal model. Mice were vaccinated and challenged in a primary tumor and experimental metastasis model. In both models, vaccination significantly reduced tumor incidence and lung metastases. Humoral and cell-mediated responses were then determined. Flow cytometry and immunohistochemistry showed that specific antibodies were developed from vaccination against both human and murine MUC18. IgG2a antibody isotype was also developed indicating a Th1 type response. ELISPOT results showed that mice vaccinated against human MUC18 created a specific T cell response to targets expressing human MUC18. Mice vaccinated against murine MUC18 raised specific effector cells against target cells expressing murine MUC18 in a cell killing assay. These results indicate that vaccination against MUC18 developed specific immune responses against MUC18 and were effective in controlling tumor growth in melanoma expressing MUC18. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ultraviolet radiation (UVR) present in sunlight is the primary cause of nonmelanoma skin cancer and has been implicated in the development of cutaneous malignant melanoma. Ultraviolet radiation also suppresses the immune response. In the majority of studies investigating the mechanisms regulating UV-induced immune suppression, UV is used to suppress the induction of immune responses. Equally important, is the ability of UVR to suppress established immune responses, such as the recall reaction in humans, which protects against microbial infections. We established a murine model to help elucidate the immunological mechanisms governing UV-induced suppression of the elicitation of immune responses. 80 kJ/m2 of UVR nine days after sensitization consistently suppressed the elicitation of delayed type hypersensitivity reaction to C. albicans . We found ultraviolet A (320±400 nm) radiation was as effective as solar-simulated ultraviolet A + B (290±400 nm) in suppressing the elicitation of an established immune response. The mechanisms involved in UV-induced suppression of the induction & elicitation of the immune response are similar. For example, mice irradiated with UV after immunization generated antigen-specific T suppressor cells. Injection of monoclonal antibodies to IL-10 or recombinant IL-12 immediately after exposure to UVR blocked immune suppression. Liposomes containing bacteriophage T4N5 to the skin of mice also prevented immune suppression, demonstrating an essential role for ultraviolet-induced DNA damage in the suppression of established immune reactions. ^ In addition to damaging DNA, UV initiates immune suppression through the isomerization of urocanic acid in the epidermis. Here we provide evidence that cis-UCA induces systemic immunosuppression via the serotonin (5-hydroxyyryptamine; 5-HT) receptor. Biochemical and immunological analysis indicate that cis-UCA binds to, and activates, the serotonin receptor. Moreover, serotonin specific antibodies block UV- and/or cis-UCA-induced immune suppression. Our findings identify cis-UCA as novel serotonin receptor ligand and indicate that serotonin receptor engagement can activate immune suppression. Cumulatively, our data suggest that similar immune regulatory mechanisms are activated regardless of whether we expose mice to solar-simulated UV (UVA + UVB) radiation or UVA only, and that ultraviolet radiation activates similar immunologic pathways to suppress the induction or the elicitation of the immune response. ^