17 resultados para Receptors, Antigen, T-Cell


Relevância:

40.00% 40.00%

Publicador:

Resumo:

T cell activation requires antigen-specific T cell receptor signals that spatially and temporally coincide with a second costimulatory signal. CD28 and α4β1 integrin both function as T cell costimulators, but their individual mechanisms remain elusive. By directly comparing CD3-dependent functions and signaling pathways employed by these two costimulatory receptors, aspects of their individual signaling mechanisms are explored. We determined that CD28 and α4β1 integrins both use Src-family kinase Lck and MAPK Erk, but to different extents and functional ends. After identifying functional differences between CD28 and integrin costimulatory pathways, the focus of the study turned to integrin signaling in naïve and memory T cell subsets. CD45RO T cells are fully co-activated by natural β1 integrin ligands fibronectin (FN) and VCAM-1, β1 monoclonal antibody 33B6, as well as α4β1 monoclonal antibody 19H8 which binds a combinatorial epitope of the α4β1 heterodimer. While CD28 fully costimulates CD45RA T cells, the degree of activation from integrin ligands varies. FN costimulates CD3-dependent proliferation, IL-2 secretion, and early activation markers CD25 and CD69. However, β1 antibody 33B6, which binds to the same T cell integrins (α4β1 and α5β1) as natural ligand FN, failed to costimulate proliferation or IL-2 in the CD45RA subset, but retained the ability to regulate CD25 and CD69. Unique aspects of 19H8 signaling involve early Erk activation and IL-2 independent proliferation. Signaling defects through 33B6 ligation correlates with poor adhesion under fluid flow conditions, suggesting a cytoskeletal basis for signaling. All together, these data provide evidence for a mechanism of α4β1 integrin signaling and describe functional differences between naïve and memory T cells. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cell-based therapies have demonstrated potency and efficacy as cancer treatment modalities. T cells can be dichotomized by their T cell receptor (TCR) complexes where alpha/beta T cells (95% of T cells) and gamma/delta T cells (+T cells proliferated to clinically significant numbers and ROR1+ tumor cells were effectively targeted and killed by both ROR1-specific CAR+ T cell populations, although ROR1RCD137 were superior to ROR1RCD28 in clearance of leukemia xenografts in vivo. The second specific aim focused on generating bi-specific CD19-specific CAR+ gamma/delta T cells with polyclonal TCRgamma/delta repertoire on CD19+ artificial antigen presenting cells (aAPC). Enhanced cytolysis of CD19+ leukemia was observed by CAR+ gamma/delta T cells compared to CARneg gamma/delta T cells, and leukemia xenografts were significantly reduced compared to control mice in vivo. The third specific aim looked at the broad anti-tumor effects of polyclonal gamma/delta T cells expanded on aAPC without CAR+ T cells, where Vdelta1, Vdelta2, and Vdelta3 populations had naïve, effector memory, and central memory phenotypes and effector function strength in the following order: Vdelta2>Vdelta3>Vdelta1. Polyclonal gamma/delta T cells eliminated ovarian cancer xenografts in vivo and increased survival compared to control mice. Thus, translating these methodologies to clinical trials will provide cancer patients novel, safe, and effective options for their treatment.