24 resultados para Presbyterian-University of Pennsylvania Medical Center.
Resumo:
Clinical medical librarianship is entering its second decade, but little evaluative data has accrued in the literature. Variations from the original programs and novel new approaches have insured the survival of the program so far. The clinical librarian (CL) forms a vital link between the library and the health care professional, operating as an important information transfer agent. However, to further insure the survival of these vital programs, hard evaluative evidence is needed. The University of Texas Medical Branch (UTMB) at Galveston began a CL Program in 1978/79. An extensive three-year pre/post evaluation study was conducted using a specifically developed evaluation model, which, if adopted by others, will provide the needed comparative data. Both a pilot study, or formative evaluation, and a summative evaluation were conducted. The results of this evaluation confirmed many of the conclusions reported by other CL programs. Eight hypotheses were proposed at the beginning of this study. Data were collected and used to support acceptance or rejection of the null hypotheses, and conclusions were drawn according to the results. Implications relevant to the study conclusions and future trends in medical librarianship are also discussed in the closing chapter.
Resumo:
The factorial validity of the SF-36 was evaluated using confirmatory factor analysis (CFA) methods, structural equation modeling (SEM), and multigroup structural equation modeling (MSEM). First, the measurement and structural model of the hypothesized SF-36 was explicated. Second, the model was tested for the validity of a second-order factorial structure, upon evidence of model misfit, determined the best-fitting model, and tested the validity of the best-fitting model on a second random sample from the same population. Third, the best-fitting model was tested for invariance of the factorial structure across race, age, and educational subgroups using MSEM.^ The findings support the second-order factorial structure of the SF-36 as proposed by Ware and Sherbourne (1992). However, the results suggest that: (a) Mental Health and Physical Health covary; (b) general mental health cross-loads onto Physical Health; (c) general health perception loads onto Mental Health instead of Physical Health; (d) many of the error terms are correlated; and (e) the physical function scale is not reliable across these two samples. This hierarchical factor pattern was replicated across both samples of health care workers, suggesting that the post hoc model fitting was not data specific. Subgroup analysis suggests that the physical function scale is not reliable across the "age" or "education" subgroups and that the general mental health scale path from Mental Health is not reliable across the "white/nonwhite" or "education" subgroups.^ The importance of this study is in the use of SEM and MSEM in evaluating sample data from the use of the SF-36. These methods are uniquely suited to the analysis of latent variable structures and are widely used in other fields. The use of latent variable models for self reported outcome measures has become widespread, and should now be applied to medical outcomes research. Invariance testing is superior to mean scores or summary scores when evaluating differences between groups. From a practical, as well as, psychometric perspective, it seems imperative that construct validity research related to the SF-36 establish whether this same hierarchical structure and invariance holds for other populations.^ This project is presented as three articles to be submitted for publication. ^
Resumo:
Statement of the problem and public health significance. Hospitals were designed to be a safe haven and respite from disease and illness. However, a large body of evidence points to preventable errors in hospitals as the eighth leading cause of death among Americans. Twelve percent of Americans, or over 33.8 million people, are hospitalized each year. This population represents a significant portion of at risk citizens exposed to hospital medical errors. Since the number of annual deaths due to hospital medical errors is estimated to exceed 44,000, the magnitude of this tragedy makes it a significant public health problem. ^ Specific aims. The specific aims of this study were threefold. First, this study aimed to analyze the state of the states' mandatory hospital medical error reporting six years after the release of the influential IOM report, "To Err is Human." The second aim was to identify barriers to reporting of medical errors by hospital personnel. The third aim was to identify hospital safety measures implemented to reduce medical errors and enhance patient safety. ^ Methods. A descriptive, longitudinal, retrospective design was used to address the first stated objective. The study data came from the twenty-one states with mandatory hospital reporting programs which report aggregate hospital error data that is accessible to the public by way of states' websites. The data analysis included calculations of expected number of medical errors for each state according to IOM rates. Where possible, a comparison was made between state reported data and the calculated IOM expected number of errors. A literature review was performed to achieve the second study aim, identifying barriers to reporting medical errors. The final aim was accomplished by telephone interviews of principal patient safety/quality officers from five Texas hospitals with more than 700 beds. ^ Results. The state medical error data suggests vast underreporting of hospital medical errors to the states. The telephone interviews suggest that hospitals are working at reducing medical errors and creating safer environments for patients. The literature review suggests the underreporting of medical errors at the state level stems from underreporting of errors at the delivery level. ^
Resumo:
Background. Clostridium difficile is the leading cause of hospital associated infectious diarrhea and colitis. About 3 million cases of Clostridium difficile diarrhea occur each year with an annual cost of $1 billion. ^ About 20% of patients acquire C. difficile during hospitalization. Infection with Clostridium difficile can result in serious complications, posing a threat to the patient's life. ^ Purpose. The aim of this research was to demonstrate the uniqueness in the characteristics of C. difficile positive nosocomial diarrhea cases compared with C. difficile negative nosocomial diarrhea controls admitted to a local hospital. ^ Methods. One hundred and ninety patients with a positive test and one hundred and ninety with a negative test for Clostridium difficile nosocomial diarrhea, selected from patients tested between January 1, 2002 and December 31, 2003, comprised the study population. Demographic and clinical data were collected from medical records. Logistic regression analyses were conducted to determine the associated odds between selected variables and the outcome of Clostridium difficile nosocomial diarrhea. ^ Results. For the antibiotic classes, cephalosporins (OR, 1.87; CI 95, 1.23 to 2.85), penicillins (OR, 1.57; CI 95, 1.04 to 2.37), fluoroquinolones (OR, 1.65; CI 95, 1.09 to 2.48) and antifungals (OR, 2.17; CI 95, 1.20 to 3.94), were significantly associated with Clostridium difficile nosocomial diarrhea Ceftazidime (OR, 1.95; CI 95, 1.25 to 3.03, p=0.003), gatifloxacin (OR, 1.97; CI 95, 1.31 to 2.97, p=0.001), clindamycin (OR, 3.13; CI 95, 1.99 to 4.93, p<0.001) and vancomycin (OR, 1.77; CI 95, 1.18 to 2.66, p=0.006, were also significantly associated with the disease. Vancomycin was not statistically significant when analyzed in a multivariable model. Other significantly associated drugs were, antacids, laxatives, narcotics and ranitidine. Prolong use of antibiotics and an increased number of comorbid conditions were also associated with C. difficile nosocomial diarrhea. ^ Conclusion. The etiology for C. difficile diarrhea is multifactorial. Exposure to antibiotics and other drugs, prolonged antibiotic usage, the presence and severity of comorbid conditions and prolonged hospital stay were shown to contribute to the development of the disease. It is imperative that any attempt to prevent the disease, or contain its spread, be done on several fronts. ^
Resumo:
The level of compliance with clinical practice guidelines for patients with Type II Diabetes Mellitus was evaluated in 157 patients treated at BAMC from 1 January 2006 to 1 January 2007. This retrospective analysis was conducted reviewing data from medical records and following the VA/DOD protocols that health care providers are expected to follow at this facility. Data collected included patient’s age and gender, presence or absence of complications of diabetes, physical examination findings, glycemic and lipid control, eye care, foot care, kidney function, and self-management and education. Subjects were selected performing systematic random sampling, and included both male and female patients, from a variety of ages and ethnic groups. The Diabetes complications screened for included glycemic and lipid complications, retinopathy, cardiovascular complications, peripheral circulation complications, and nephropathy. The results revealed that 19.10% had no complications and that the most common complications were: cardiovascular (49.68%), glycemic and lipid control (10.82%), retinopathy and peripheral circulation (8.28% each), and nephropathy (2.54%). Only 2.54% of the records reviewed did not include information on complications. Strictly following the Department of Defense guidelines, six treatment modules were evaluated independently and together to get a final percentage of adherence to the clinical practice guidelines. It was established that the level of adherence was going to be graded as follows: Extremely deficient: 0-15%; very poor: 16-30%; Poor and in need of improvement: 31-45%. Acceptable: 46-60%; Good: 61-80%, and Excellent: 81-100%. The results indicated that the percentage of physicians' adherence to each protocol was as follows: 88.31%, 89.93%, 90.63%, 89.42%, 89.42% and 89.64%. When the results were pooled, the level of adherence to the clinical practice guidelines was 89.55%, proving my hypothesis that Brooke Army Medical Center physicians have excellent adherence to the standard protocols for Diabetes Type II to treat their patients. ^
Resumo:
This study sought to understand the elements affecting the success or failure of strategic repositioning efforts by academic medical centers (AMC). The research question was: What specific elements in the process appear to be most important in determining the success or failure of an AMC.s strategic repositioning? Where success is based on the longterm sustainability of the new position.^ "An organization's strategic position is its perceptual location relative to others" (Gershon, 2003). Hence, strategic repositioning represents a shift from one strategic position within an environment to another (H. Mintzberg, 1987a). A deteriorating value proposition coupled with an unsustainable national health care financing system is forcing AMCs to change their strategic position. Where the value proposition is defined as the health outcome per dollar spent. ^ AMCs are of foundational importance to our health care system. They educate our new physicians, generate significant scientific breakthroughs, and care for our most difficult patients. Yet, their strategic, financial and business acumen leaves them particularly vulnerable in a changing environment. ^ After a literature review revealed limited writing on this subject, the research question was addressed using three separate but parallel exploratory case study inquiries of AMCs that recently underwent a strategic repositioning. Participating in the case studies were the Baylor College of Medicine, the University of Texas M. D. Anderson Cancer Center, and the University of Texas Medical Branch.^ Each case study consisted of two major research segments; a thorough documentation review followed by semi-structured interviews of selected members of their governance board, executive and faculty leadership teams. While each case study.s circumstances varied, their response to the research question, as extracted through thematic coding and analysis of the interviews, had a high degree of commonality.^ The results identified managing the strategic risk surrounding the repositioning and leadership accountability as the two foundational elements of success or failure. Metrics and communication were important process elements. They both play a major role in managing the strategic repositioning risk communication loop. Sustainability, the final element, was the outcome sought.^ Factors leading to strategic repositioning included both internal and external pressures and were primarily financial or mission based. Timing was an important consideration as was the selection of the strategic repositioning endpoint.^ In conclusion, a framework for the strategic repositioning of AMCs was offered that integrates the findings of this study; the elements of success, the factors leading to strategic repositioning, and the risk communication loop. ^
Resumo:
In 1941 the Texas Legislature appropriated $500,000 to the Board of Regents of the University of Texas to establish a cancer research hospital. The M. D. Anderson Foundation offered to match the appropriation with a grant of an equal sum and to provide a permanent site in Houston. In August, 1942 the Board of Regent of the University and the Trustees of the Foundation signed an agreement to embark on this project. This institution was to be the first one in the medical center, which was incorporated in October, 1945. The Board of Trustees of the Texas Medical Center commissioned a hospital survey to: - Define the needed hospital facilities in the area - Outline an integrated program to meet these needs - Define the facilities to be constructed - Prepare general recommendations for efficient progress The Hospital Study included information about population, hospitals, and other health care and education facilities in Houston and Harris County at that time. It included projected health care needs for future populations, education needs, and facility needs. It also included detailed information on needs for chronic illnesses, a school of public health, and nursing education. This study provides valuable information about the general population and the state of medicine in Houston and Harris County in the 1940s. It gives a unique perspective on the anticipated future as civic leaders looked forward in building the city and region. This document is critical to an understanding of the Texas Medical Center, Houston and medicine as they are today. SECTIONS INCLUDE: Abstract The Abstract was a summary of the 400 page document including general information about the survey area, community medical assets, and current and projected medical needs which the Texas Medical Center should meet. The 123 recommendations were both general (e.g., 12. “That in future planning, the present auxiliary department of the larger hospitals be considered inadequate to carry an added teaching research program of any sizable scope.”) and specific (e.g., 22. That 14.3% of the total acute bed requirement be allotted for obstetric care, reflecting a bed requirement of 522 by 1950, increasing to 1,173 by 1970.”) Section I: Survey Area This section basically addressed the first objective of the survey: “define the needed hospital facilities in the area.” Based on the admission statistics of hospitals, Harris County was included in the survey, with the recognition that growth from out-lying regional areas could occur. Population characteristics and vital statistics were included, with future trends discussed. Each of the hospitals in the area and government and private health organizations, such as the City-County Welfare Board, were documented. Statistics on the facilities use and capacity were given. Eighteen recommendations and observations on the survey area were given. Section II: Community Program This section basically addressed the second objective of the survey: “outline an integrated program to meet these needs.” The information from the Survey Area section formed the basis of the plans for development of the Texas Medical Center. In this section, specific needs, such as what medical specialties were needed, the location and general organization of a medical center, and the academic aspects were outlined. Seventy-four recommendations for these plans were provided. Section III: The Texas Medical Center The third and fourth objectives are addressed. The specific facilities were listed and recommendations were made. Section IV: Special Studies: Chronic Illness The five leading causes of death (heart disease, cancer, “apoplexy”, nephritis, and tuberculosis) were identified and statistics for morbidity and mortality provided. Diagnostic, prevention and care needs were discussed. Recommendations on facilities and other solutions were made. Section IV: Special Studies: School of Public Health An overview of the state of schools of public health in the US was provided. Information on the direction and need of this special school was also provided. Recommendations on development and organization of the proposed school were made. Section IV: Special Studies: Needs and Education Facilities for Nurses Nursing education was connected with hospitals, but the changes to academic nursing programs were discussed. The needs for well-trained nurses in an expanded medical environment were anticipated to result in significant increased demands of these professionals. An overview of the current situation in the survey area and recommendations were provided. Appendix A Maps, tables and charts provide background and statistical information for the previous sections. Appendix B Detailed census data for specific areas of the survey area in the report were included. Sketches of each of the fifteen hospitals and five other health institutions showed historical information, accreditations, staff, available facilities (beds, x-ray, etc.), academic capabilities and financial information.
Resumo:
Information and contacts for the multiple institutions in the Texas Medical Center. Created by the International Affairs Advisory Council (IAAC).