20 resultados para Peripheral blood stem cell transplantation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To meet the requirements for rapid tumor growth, a complex array of non-neoplastic vascular, fibroblastic, and immune cells are recruited to the tumor microenvironment. Understanding the origin, composition, and mechanism(s) for recruitment of these stromal components will help identify areas for therapeutic intervention. Previous findings have suggested that ex-vivo expanded bone marrow-derived MSC home to the sites of tumor development, responding to inflammatory signals and can serve as effective drug delivery vehicles. Therefore, we first sought to fully assess conditions under which MSC migrate to and incorporate into inflammatory microenvironments and the consequences of modulated inflammation. MSC delivered to animals bearing inflammatory insults were monitored by bioluminescence imaging and displayed specific tropism and selective incorporation into all tumor and wound sites. These findings were consistent across routes of tumor establishment, MSC administration, and immunocompetence. MSC were then used as drug delivery vehicles, transporting Interferon β to sites of pancreatic tumors. This therapy was effective at inhibiting pancreatic tumor growth under homeostatic conditions, but inhibition was lost when inflammation was decreased with CDDO-Me combination treatment. Next, to examine the endogenous tumor microenvironment, a series of tissue transplant experiments were carried out in which tissues were genetically labeled and engrafted in recipients prior to tumor establishment. Tumors were then analyzed for markers of tumor associated fibroblasts (TAF): α-smooth muscle actin (α-SMA), nerve glia antigen 2 (NG2), fibroblast activation protein (FAP), and fibroblast specific protein (FSP) as well as endothelial marker CD31 and macrophage marker F4/80. We determined the majority of α-SMA+, NG2+ and CD31+ cells were non-bone marrow derived, while most FAP+, FSP+, and F4/80+ cells were recruited from the bone marrow. In accord, transplants of prospectively isolated BM MSC prior to tumor development indicated that these cells were recruited to the tumor microenvironment and co-expressed FAP and FSP. In contrast, fat transplant experiments revealed recruited fat derived cells co-expressed α-SMA, NG2, and CD31. These results indicate TAF are a heterogeneous population composed of subpopulations with distinct tissues of origin. These models have provided a platform upon which further investigation into tumor microenvironment composition and tests for candidate drugs can be performed. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Respiratory Syncytial Virus (RSV) is a major cause of respiratory tract infections in immunocompromised patients such as children less than 2 years, premature infants with congenital heart disease and chronic lung disease, elderly patients and patients who have undergone hematopoietic stem cell transplant (HSCT). HSCT patients are at high risk of RSV infection, at increased risk of developing pneumonia, and RSV-related mortality. Immunodeficiency can be a major risk factor for severe infection & mortality. Therapy of RSV infection with Ribavirin, Palivizumab and Immunoglobulin has shown to reduce the risk of progression to LRI and mortality, especially if initiated early in the disease. Data on RSV infection in HSCT patients is limited, especially at various levels of immunodeficiency. 323 RSV infections in HSCT patients have been identified between 1/1995 and 8/2009 at University of Texas M D Anderson Cancer Center (UTMDACC). In this proposed study, we attempted to analyze a de-identified database of these cases and describe the epidemiologic characteristics of RSV infection in HSCT patients, the course of the infection, rate of development of pneumonia and RSV-related mortality in HSCT patients at UTMDACC.^ Key words: RSV infections, HSCT patients ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mesenchymal stromal cell (MSC) therapy has shown promise for the treatment of traumatic brain injury (TBI). Although the mechanism(s) by which MSCs offer protection is unclear, initial in vivo work has suggested that modulation of the locoregional inflammatory response could explain the observed benefit. We hypothesize that the direct implantation of MSCs into the injured brain activates resident neuronal stem cell (NSC) niches altering the intracerebral milieu. To test our hypothesis, we conducted initial in vivo studies, followed by a sequence of in vitro studies. In vivo: Sprague-Dawley rats received a controlled cortical impact (CCI) injury with implantation of 1 million MSCs 6 h after injury. Brain tissue supernatant was harvested for analysis of the proinflammatory cytokine profile. In vitro: NSCs were transfected with a firefly luciferase reporter for NFkappaB and placed in contact culture and transwell culture. Additionally, multiplex, quantitative PCR, caspase 3, and EDU assays were completed to evaluate NSC cytokine production, apoptosis, and proliferation, respectively. In vivo: Brain supernatant analysis showed an increase in the proinflammatory cytokines IL-1alpha, IL-1beta, and IL-6. In vitro: NSC NFkappaB activity increased only when in contact culture with MSCs. When in contact with MSCs, NSCs show an increase in IL-6 production as well as a decrease in apoptosis. Direct implantation of MSCs enhances neuroprotection via activation of resident NSC NFkappaB activity (independent of PI3 kinase/AKT pathway) leading to an increase in IL-6 production and decrease in apoptosis. In addition, the observed NFkappaB activity depends on direct cell contact.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Each year, pediatric traumatic brain injury (TBI) accounts for 435,000 emergency department visits, 37,000 hospital admissions, and approximately 2,500 deaths in the United States. TBI results in immediate injury from direct mechanical force and shear. Secondary injury results from the release of biochemical or inflammatory factors that alter the loco-regional milieu in the acute, subacute, and delayed intervals after a mechanical insult. Preliminary preclinical and clinical research is underway to evaluate the benefit from progenitor cell therapeutics, hypertonic saline infusion, and controlled hypothermia. However, all phase III clinical trials investigating pharmacologic monotherapy for TBI have shown no benefit. A recent National Institutes of Health consensus statement recommends research into multimodality treatments for TBI. This article will review the complex pathophysiology of TBI as well as the possible therapeutic mechanisms of progenitor cell transplantation, hypertonic saline infusion, and controlled hypothermia for possible utilization in multimodality clinical trials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The feasibility of establishment of continuously proliferating growth factor-dependent human B lymphocytes was investigated. Normal B lymphocytes prepared from peripheral venous blood were stimulated with a variety of known polyclonal B cell activators, in the continuous presence of various cytokine preparations. Continuously proliferating growth factor-dependent B cell populations were obtained from cultures activated with either insoluble anti-IgM ((mu)-chain specific), soluble anti-IgM, heat-killed Staphylococcus aureus Cowen I (SAC), or dextran sulphate (DxS), in the continuous presence of exogenously added growth factor preparations containing either IL-1, IL-2 and BCGF, or BCGF alone. Although growth factor-dependent B cell lines were obtained via all three methods of activation, the correlation of mode of activation and growth factor preparation proved to be critical. B cell lines could not be established with anti-(mu) activation in the presence of only BCGF; however, B cell lines were successfully obtained with SAC or DxS activation from those cultures continuously replenished with only BCGF. These cultured B lymphocyte populations were routinely maintained in logarithmic-phase growth in the presence of exogenously added growth factor, and exhibited a population doubling time of approximately 36 hours. They were shown to specifically absorb BCGF, suggesting the presence of membrane receptors for it. Also, these cultured B cells have been utilized for the development of a microassay for the assessment of a M(,r) 12,000-14,000 B cell growth factor activity that is accurate, sensitive, and precise. The pronounced sensitivity of this bioassay beyond that of the conventional peripheral blood B cell assay has aided in the purification to homogeneity of natural product extracellular BCGF (EC-BCGF), and in the determination of the nucleotide sequence for a gene coding for a protein exhibiting BCGF activity. Additionally, these B cell lines specifically absorb, and proliferate in the presence of, an affinity-purified M(,r) 60,000 trypsin-sensitive intracellular protein derived from freshly isolated human T lymphocytes, providing evidence for a putative intracellular precursor of EC-BCGF, or a novel high molecular weight BCGF species. ^