20 resultados para Patient Activation Measure 13


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite having been identified over thirty years ago and definitively established as having a critical role in driving tumor growth and predicting for resistance to therapy, the KRAS oncogene remains a target in cancer for which there is no effective treatment. KRas is activated b y mutations at a few sites, primarily amino acid substitutions at codon 12 which promote a constitutively active state. I have found that different amino acid substitutions at codon 12 can activate different KRas downstream signaling pathways, determine clonogenic growth potential and determine patient response to molecularly targeted therapies. Computer modeling of the KRas structure shows that different amino acids substituted at the codon 12 position influences how KRas interacts with its effecters. In the absence of a direct inhibitor of mutant KRas several agents have recently entered clinical trials alone and in combination directly targeting two of the common downstream effecter pathways of KRas, namely the Mapk pathway and the Akt pathway. These inhibitors were evaluated for efficacy against different KRAS activating mutations. An isogenic panel of colorectal cells with wild type KRas replaced with KRas G12C, G12D, or G12V at the endogenous loci differed in sensitivity to Mek and Akt inhibition. In contrast, screening was performed in a broad panel of lung cell lines alone and no correlation was seen between types of activating KRAS mutation due to concurrent oncogenic lesions. To find a new method to inhibit KRAS driven tumors, siRNA screens were performed in isogenic lines with and without active KRas. The knockdown of CNKSR1 (CNK1) showed selective growth inhibition in cells with an oncogenic KRAS. The deletion of CNK1 reduces expression of mitotic cell cycle proteins and arrests cells with active KRas in the G1 phase of the cell cycle similar to the deletion of an activated KRas regardless of activating substitution. CNK1 has a PH domain responsible for localizing it to membrane lipids making KRas potentially amenable to inhibition with small molecules. The work has identified a series of small molecules capable of binding to this PH domain and inhibiting CNK1 facilitated KRas signaling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As an interface between the circulatory and central nervous systems, the neurovascular unit is vital to the development and survival of tumors. The malignant brain cancer glioblastoma multiforme (GBM) displays invasive growth behaviors that are major impediments to surgical resection and targeted therapies. Adhesion and signaling pathways that drive GBM cell invasion remain largely uncharacterized. Here we have utilized human GBM cell lines, primary patient samples, and pre-clinical mouse models to demonstrate that integrin αvβ8 is a major driver of GBM cell invasion. β8 integrin is overexpressed in many human GBM cells, with higher integrin expression correlating with increased invasion and diminished patient survival. Silencing β8 integrin in human GBM cells leads to impaired tumor cell invasion due to hyperactivation of the Rho GTPases Rac1 and Cdc42. β8 integrin associates with Rho GDP Dissociation Inhibitor 1 (RhoGDI1), an intracellular signaling effector that sequesters Rho GTPases in their inactive GDP-bound states. Silencing RhoGDI1 expression or uncoupling αvβ8 integrin-RhoGDI1 protein interactions blocks GBM cell invasion due to Rho GTPase hyperactivation. These data reveal for the first time that αvβ8 integrin, via interactions with RhoGDI1, suppresses activation of Rho proteins to promote GBM cell invasiveness. Hence, targeting the αvβ8 integrin-RhoGDI1 signaling axis may be an effective strategy for blocking GBM cell invasion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND. The development of interferon-gamma release assays (IGRA) has introduced powerful tools in diagnosing latent tuberculosis infection (LTBI) and may play a critical role in the future of tuberculosis diagnosis. However, there have been reports of high indeterminate results in young patient populations (0-18 years). This study investigated results of the QunatiFERON-TB Gold In-Tube (QFT-GIT) IGRA in a population of children (0-18 years) at Texas Children's Hospital in association with specimen collection procedures using surrogate variables. ^ METHODS. A retrospective case-control study design was used for this investigation. Cases were defined as having QFT-GIT indeterminate results. Controls were defined as having either positive or negative results (determinates). Patients' admission status, staff performing specimen collection, and specific nurse performing specimen collection were used as surrogates to measure specimen collection procedures. ^ To minimize potential confounding, abstraction of patients' electronic medical records was performed. Abstracted data included patients' medications and evaluation at the time of QFT-GIT specimen collection in addition to their medical history. QFT-GIT related data was also abstracted. Cases and controls were characterized using chi-squared tests or Fisher's exact tests across categorical variables. Continuous variables were analyzed using one-way ANOVA and t-tests for continuous variables. A multivariate model was constructed by backward stepwise removal of statistically significant variables from univariate analysis. ^ RESULTS. Patient data was abstracted from 182 individuals aged 0-18 years from July 2010 to August 2011 at Texas Children's Hospital. 56 cases (indeterminates) and 126 controls (determinates) were enrolled. Cancer was found to be an effect modifier with subsequent stratification resulting in a cancer patient population too small to analyze (n=13). Subsequent analyses excluded these patients. ^ The exclusion of cancer patients resulted in a population of 169 patients with 49 indeterminates (28.99%) and 120 determinates (71.01%), with mean ages of 9.73 (95% CI: 8.03, 11.43) years and 11.66 (95% CI: 10.75, 12.56) years (p = 0.033), respectively. Median age of patients who were indeterminates and determinates were 12.37 and 12.87 years, respectively. Lack of data for our specific nurse surrogate (QFTNurse) resulted in its exclusion from analysis. The final model included only our remaining surrogate variables (QFTStaff and QFTInpatientOutpatient). The staff collecting surrogate (QFTStaff) was found to be modestly associated with indeterminates when nurses collected the specimen (OR = 1.54, 95% CI: 0.51, 4.64, p = 0.439) in the final model. Inpatients were found to have a strong and statistically significant association with indeterminates (OR = 11.65, 95% CI: 3.89, 34.9, p < 0.001) in the final model. ^ CONCLUSION. Inpatient status was used as a surrogate for indication of nurse drawn blood specimens. Nurses have had little to no training regarding shaking of tubes versus phlebotomists regarding QFT-GIT testing procedures. This was also measured by two other surrogates; specifically a medical note stating whether a nurse or phlebotomist collected the specimen (QFTStaff) and the name and title of the specific nurse if collection was performed by a nurse (QFTNurse). Results indicated that inpatient status was a strong and statistically significant factor for indeterminates, however, nurse collected specimens and indeterminate results had no statistically significant association in non-cancer patients. The lack of data denoting the specific nurse performing specimen collection excluded the QFTNurse surrogate in our analysis. ^ Findings suggests training of staff personnel in specimen procedures may have little effect on the number of indeterminates while inpatient status and thus possibly illness severity may be the most important factor for indeterminate results in this population. The lack of congruence between our surrogate measures may imply that our inpatient surrogate gauged illness severity rather than collection procedures as intended. ^ Despite the lack of clear findings, our analysis indicated that more than half of indeterminates were found in specimens drawn by nurses and as such staff training may be explored. Future studies may explore methods in measuring modifiable variables during pre-analytical QFT-GIT procedures that can be discerned and controlled. Identification of such measures may provide insight into ways to lowering indeterminate QFT-GIT rates in children.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The neu oncogene encodes a growth factor receptor-like protein, p185, with an intrinsic tyrosine kinase activity. A single point mutation, an A to T transversion resulting in an amino acid substitution from valine to glutamic acid, in the transmembrane domain of the rat neu gene was found to be responsible for the transforming and tumorigenic phenotype of the cells that carry it. In contrast, the human proto-neu oncogene is frequently amplified in tumors and cell lines derived from tumors and the human neu gene overexpression/amplification in breast and ovarian cancers is known to correlate with poor patient prognosis. Examples of the human neu gene overexpression in the absence of gene amplification have been observed, which may suggest the significant role of the transcriptional and/or post-transcriptional control of the neu gene in the oncogenic process. However, little is known about the transcriptional mechanisms which regulate the neu gene expression. In this study, three examples are presented to demonstrate the positive and negative control of the neu gene expression.^ First, by using band shift assays and methylation interference analyses, I have identified a specific protein-binding sequence, AAGATAAAACC ($-$466 to $-$456), that binds a specific trans-acting factor termed RVF (for EcoRV factor on the neu promoter). The RVF-binding site is required for maximum transcriptional activity of the rat neu promoter. This same sequence is also found in the corresponding regions of both human and mouse neu promoters. Furthermore, this sequence can enhance the CAT activity driven by a minimum promoter of the thymidine kinase gene in an orientation-independent manner, and thus it behaves as an enhancer. In addition, Southwestern (DNA-protein) blot analysis using the RVF-binding site as a probe points to a 60-kDa polypeptide as a potential candidate for RVF.^ Second, it has been reported that the E3 region of adenovirus 5 induces down-regulation of epidermal growth factor (EGF) receptor through endocytosis. I found that the human neu gene product, p185, (an EGF receptor-related protein) is also down-regulated by adenovirus 5, but via a different mechanism. I demonstrate that the adenovirus E1a gene is responsible for the repression of the human neu gene at the transcriptional level.^ Third, a differential expression of the neu gene has been found in two cell model systems: between the mouse fibroblast Swiss-Webster 3T3 (SW3T3) and its variant NR-6 cells; and between the mouse liver tumor cell line, Hep1-a, and the mouse pancreas tumor cell line, 266-6. Both NR-6 and 266-6 cell lines are not able to express the neu gene product, p185. I demonstrate that, in both cases, the transcriptional repression of the neu gene may account for the lack of the p185 expression in these two cell lines. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A newly described subset of monocytes has been identified in peritoneal exudate cells (PEC) from the malignant ascites of patients with ovarian cancer. These cells were characterized by the production of IL-10 and TGF-β2, but not IL-12, IL-1α, or TNF-α, and expressed CD14, CD16, and CD54, but not HLA-DR, CD80, CD86, CD11a, CD11b, or CD25 cell surface antigens. Since this subset of monocytes could affect the modulation of tumor immune responses in vivo, studies were undertaken to determine their effect on the activation and proliferation of autologous T-cells from the peritoneal cavity of patients with ovarian carcinoma. Cytokine transcripts, including IL-2, GM-CSF, and IFN-γ were detected in T-cells isolated from patient specimens that also contained the IL-10 producing monocytes, although the IFN-γ and IL-2 proteins could not be detected in T-cells co-incubated with the IL-10 producing monocytes in vitro. Additionally, IL-10 producing monocytes co-cultured with autologous T-cells inhibited the proliferation of the T-cells in response to PHA. T-cell proliferation and cytokine protein production could be restored by the addition of neutralizing antibodies to IL-10R and TGF-β to the co-culture system. These results suggested that this subset of monocytes may modulate antitumor immune responses by inhibiting T-cell proliferation and cytokine protein production. Further studies determined that the precursors to the inhibitory monocytes were tumor-associated and only present in the peripheral blood of patients with ovarian cancer and not present in the peripheral blood of healthy donors. These precursors could be induced to the suppressor phenotype by the addition of IL-2 and GM-CSF, two cytokines detected in the peritoneal cavity of ovarian cancer patients. Lastly, it was shown that the suppressor monocytes from the peritoneal cavity of ovarian cancer patients could be differentiated to a non-inhibitory phenotype by the addition of TNF-α and IFN-γ to the culture system. The differentiated monocytes did not produce IL-10, expressed the activation antigens HLA-DR, CD80, and CD86, and were able to stimulate autologous T-cells in vitro. Since a concomitant reduction in immune function is associated with tumor growth and progression, the effects of these monocytes are of considerable importance in the context of tumor immunotherapy. ^