47 resultados para P19 embryonal carcinoma cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epidermal growth factor receptor (EGFR) is a cell membrane tyrosine kinase receptor and plays a pivotal role in regulating cell growth, differentiation, cell cycle, and tumorigenesis. Deregulation of EGFR causes many diseases including cancers. Intensive investigation of EGFR alteration in human cancers has led to profound progress in developing drugs to target EGFR-mediated cancers. While exploring possible synergistic enhancement of therapeutic efficacy by combining EGFR tyrosine kinase inhibitors (TKI) with other anti-cancer agents, we observed that suberoylanilide hydroxamic acid (SAHA, a deacetylase inhibitor) enhanced TKI-induced cancer cell death, which further led us to question whether SAHA-mediated sensitization to TKI was associated with EGFR acetylation. What we know so far is that SAHA can inhibit class I and II histone deacetylases (HDACs), which could possibly preserve acetylation of underlying HDAC-targeted proteins including both histone and non-histone proteins. In addition, it has been reported that an HDAC inhibitor, TSA, enhanced EGFR phosphorylation in ovarian cancer cells. EGFR acetylation has also been reported to play a role in the regulation of EGFR endocytosis recently. These observations indicate that there might be an intrinsic correlation between acetylation and phosphorylation of EGFR. In other words, the interplay between EGFR acetylation and phosphorylation may contribute to HDAC inhibitors (HDACi)-augmented EGFR phosphorylation. In this investigation, we showed that CBP acetyltransferase acetylated EGFR in vivo. In response to EGF stimulation, CBP rapidly translocated from the nucleus to the cytoplasm. We also demonstrated protein-protein interaction between CBP and EGFR as well as the enhancement of EGFR acetylation by CBP. Moreover, EGFR acetylation enhanced EGFR tyrosine phosphorylation and augmented its association with Src kinase. Acetylation-deficient EGFR mutant (EGFR-K3R) significantly reduced the function and activity of EGFR. Furthermore, ectopic expression of EGFR-K3R mutant abrogated its ability to respond to EGF-induced cell proliferation, DNA synthesis, and anchorage-independent growth using cell-based assays and tumor growth in nude mice. In addition, we demonstrated that EGFR expression was associated with SAHA resistance in the treatment of cancer cells that overexpress EGFR. The knockdown of EGFR in MDA-MB-468 breast cancer cells could sensitize the cells to respond to SAHA. The overexpression of EGFR in SAHA-sensitive MDA-MB-453 breast cancer cells rendered the cells resistant to SAHA. Together, these findings suggest that EGFR plays an important role in SAHA resistance in breast carcinoma cells that we tested. The combination therapy of HDACi with TKI has been proposed for treating cancers with aberrant expression of EGFR. The evidence from pre-clinical or clinical trials demonstrated significant enhancement of therapeutic efficacy by using such a combination therapy. Our in vivo study also demonstrated that the combination of SAHA and TKI for the treatment of breast cancer significantly reduced tumor burden compared with either SAHA or TKI alone. The significance of our study elucidated another possible underlying molecular mechanism by which HDACi mediated sensitization to TKI. Our results unveiled a critical role of EGFR acetylation that regulates EGFR tyrosine phosphorylation and may further provide an experiment-based rationale for combinatorial targeted therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ataxia telangiectasia mutated (ATM) is a critical component of the cellular response to DNA damage, where it acts as a damage sensor, and signals to a large network of proteins which execute the important tasks involved in responding to the damage, namely inducing cell cycle checkpoints, inducing DNA repair, modulating transcriptional responses, and regulating cell death pathways if the damage cannot be repaired faithfully. We have now discovered that an additional novel component of this ATM-dependent damage response involves induction of autophagy in response to oxidative stress. In contrast to DNA damage-induced ATM activation however, oxidative stress induced ATM, occurs in the cytoplasm, and does not require nuclear-to-cytoplasmic shuttling of ATM. Using several cell culture systems including MCF7 breast carcinoma cells, SKOV3 ovarian cancer cells, and various lineages of mouse embryonic fibroblasts, we showed that once activated by reactive oxygen species (ROS), ATM signals to mTORC1 to induce autophagy via the LKB1-AMPK-TSC2 pathway. Targeting dysregulation of mTORC1 in Atm-deficient mice, which succumb to lymphomagenesis within 3-4 months of age with daily administration of rapamycin, could significantly extend survival and cause regression of tumors, suggesting that pharmacologically targeting this pathway has therapeutic implications in cancer. We also identified a second contrasting pathway for DNA damage-induced mTORC1 repression which does not require AMPK activation, but does require ATM and TSC2. Several potential mechanisms including mTOR localization and p53-mediated pathways were ruled out however we identified that TSC2 may be an additional cytoplasmic direct ATM substrate that is engaged in response to DNA damage specifically. Lastly, a study was performed to examine whether autophagy induced by ovarian cancer therapeutics (focusing on cisplatin, since paclitaxel does not induce autophagy in the SKOV3 cell line model we used) plays a role in resistance to therapy since autophagy can play both pro-survival mechanisms or be a mechanism of cell death. Using a genetic approach to knock-down Atg5 expression with shRNA in SKOV3 ovarian carcinoma cells, we compared the cytotoxicity of cisplatin in vector or Atg5 knock-down cells, and demonstrated that autophagy does not play any significant role in the response to cisplatin in this cell line.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The molecular mechanisms that mediate endometrial cancer invasion and metastasis remain poorly understood. This is a significant clinical problem, as there is no definitive cure for metastatic disease. The purinergic pathway’s generation of adenosine and its activation of the adenosine receptor A2B (A2BR) induces cell-cell adhesion to promote barrier function. This barrier function is known to be important in maintaining homeostasis during hypoxia, trauma, and sepsis. Loss of this epithelial barrier function provides a considerable advantage for carcinoma progression, as loss of cell-cell adhesions supports proliferation, aberrant signaling, epithelial-to-mesenchymal transition, invasion, and metastasis. The present work provides strong evidence that CD73-generated adenosine actively promotes cell-cell adhesion in carcinoma cells by filopodia-induced zippering. Adenosine-generating ecto-enzyme, CD73, was down-regulated in moderately- and poorly-differentiated, invasive, and metastatic endometrial carcinomas. CD73 expression and enzyme activity in normal endometrium and endometrial carcinomas was significantly correlated to the epithelial phenotype. Barrier function in normal epithelial cells of the endometrium was dependent on stress-induced generation of adenosine by CD73 and adenosine’s activation of A2BR. This same mechanism inhibited endometrial carcinoma cell migration and invasion. Finally, adenosine’s activation of A2BR induced the formation of filopodia that promoted the re-forming of cell-cell adhesions in carcinoma cells. Overall, these studies identified purinergic pathway-induced filopodia to be a novel mechanism of adenosine’s barrier function and a mechanism that has to be avoided/down-regulated by endometrial carcinoma cells attempting to lose attachment with their neighboring cells. These results provide insight into the molecular mechanisms of endometrial cancer invasion. In addition, because loss of cell-cell adhesions has been closely linked to therapy resistance in cancer, these results provide a rational clinical strategy for the re-establishment of cell-cell adhesions to potentially increase therapeutic sensitivity. In contrast to other molecular mechanisms regulating cell-cell adhesions, the purinergic pathway is clinically druggable, with agonists and antagonists currently being tested in clinical trials of various diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OPN is a secreted phosphate containing protein which is expressed by osteoblasts and a variety of other cells in vivo. Data from in vitro studies has accumulated which relates OPN to cellular transformation. We hypothesize that OPN expression is associated with neoplastic disease in humans as suggested by cell culture models. The overall objective of the current study was to determine the tissue distribution of OPN in human malignancy and to determine whether or not a correlation exists between OPN serum levels and malignancy. At the inception of this project, no study had been made demonstrating the relevance of OPN expression with naturally occurring neoplastic disease in humans. To date, few studies have reported OPN distribution in human neoplasia and are limited by either the number of specimens analyzed or the technique used in analysis. In this dissertation study, OPN was purified from human milk and $\alpha$-OPN antiserum developed and characterized. Following antibody development, the distribution and prevalence of OPN in human oral squamous cell carcinoma and human prostate carcinoma was evaluated using immunohistochemical localization. OPN immunolocalization was found in a high percentage of oral epithelial dysplasia and oral squamous cell carcinoma in humans. One oral squamous cell carcinoma cells line, UMSCC-1, was found to express OPN mRNA using Northern blotting. OPN localized to a high percentage of primary prostate adenocarcinomas. OPN localized to 52% of androgen dependent cases and 100% of androgen independent cases. Androgen dependent cell lines such as LNCap and NbE showed minimal OPN mRNA expression while the androgen independent lines C4-2 and PC3 produced ample OPN mRNA. An OPN sandwich assay was developed and used to determine the serum level of OPN in normal males, patients with BPH (benign prostate hypertrophy), and patients with prostate carcinoma. No statistically significant difference was found in OPN serum levels among the three groups. However, a trend of increasing OPN in the serum was noted in patients with BPH and prostate cancer. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of these studies was to investigate the role of interferon-beta (IFN-$\beta$) in angiogenesis. IFN-$\alpha/\beta$ have been implicated in inhibiting a number of steps in the angiogenic pathway. We examined the balance of angiogenesis-regulating molecules in several systems including human infantile hemangiomas, UV-B irradiated mice, and dorsal incisional wound healing in mice. In each system, epidermal hyperplasia and cutaneous angiogenesis were directly related to the expression of positive angiogenic factors (bFGF and VEGF) and inversely related to the expression of endogenous IFN-$\beta.$ The re-expression of IFN-$\beta$ correlated with tumor regression and/or resolution of wound healing. In contrast to control mice, UV-B-induced cutaneous angiogenesis and hyperplasia persisted in IFN-$\alpha/\beta$ receptor knock-out mice. In normal mice, endogenous IFN-$\beta$ was expressed by all differentiated epithelial cells exposed to environmental stimuli. The expression of endogenous IFN-$\beta$ was necessary but insufficient for complete differentiation of epidermal keratinocytes.^ The tumor organ microenvironment can regulate angiogenesis. Human bladder carcinoma cells growing in the bladder wall of nude mice express high levels of bFGF, VEGF, and MMP-9, have higher vascular densities, and produce metastases to lymph nodes and lungs, whereas the same cells growing subcutaneously express less bFGF, VEGF, and MMP-9, have lower vascular densities, and do not metastasize. IFN-$\alpha/\beta$ was found to inhibit bFGF and MMP-9 expression both in vitro and in vivo in human bladder carcinoma cells. Systemic therapy with human IFN-$\alpha$ of human bladder cancer cells growing orthotopically in nude mice, resulted in decreased vascularity, tumorigenicity, and metastasis as compared to saline treated mice. Human bladder cancer cells resistant to the antiproliferative effects of IFN were transfected with the human IFN-$\beta$ gene. Hu-IFN-$\beta$ transfected cells expressed significantly less bFGF protein and gelatinase activity than parental or control-transfected cells and did not grow at ectopic or orthotopic sites. Collectively the data provide direct evidence that IFN-$\alpha/\beta$ can inhibit angiogenesis via down-regulation of angiogenesis-stimulating cytokines. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The progressive growth of epithelial ovarian cancer tumor is regulated by proangiogenic molecules and growth factors released by tumor cells and the microenvironment. Previous studies showed that the expression of interleukin-8 (IL-8) directly correlates with the progression of human ovarian carcinomas implanted into the peritoneal cavity of nude mice. We examined the expression level of IL-8 in archival specimens of primary human ovarian carcinoma from patients undergoing curative surgery by in situ mRNA hybridization technique. The expression of IL-8 was significantly higher in patients with stage III disease than in patients with stage I disease. To investigate the role of IL-8 in the progressive growth of ovarian cancer, we isolated high- and low-IL-8 producing clones from parental Hey-A8 human ovarian cancer cells, and compared their proliferative activity and tumorigenicity in nude mice. The effect of exogenous IL-8 and IL-8 neutralizing antibody on ovarian cancer cell proliferation was investigated. Finally, we studied the modulation of IL-8 expression in ovarian cancer cells by sense and antisense IL-8 expression vector transfection and its effect on proliferation and tumorigenicity. We concluded that IL-8 has a direct growth potentiating activity in human ovarian cancer cells. ^ The expression level of IL-8 directly correlates with disease progression of human ovarian cancer, but the mechanism of induction is unknown. Since hypoxia and acidic pH are common features in solid tumors, we determined whether hypoxic and acidic conditions could regulate the expression of IL-8. Culturing the human ovarian cancer cells in hypoxic or acidic medium led to a significant increase in IL-8 mRNA and protein. Hypoxic- and acidosis-mediated transient increase in IL-8 expression involved both transcriptional activation of the IL-8 gene and enhanced stability of the IL-8 mRNA. Furthermore, we showed that IL-8 transcription activation by hypoxia or acidosis required the cooperation of NF-κB and AP-1 binding sites. ^ Finally, we studied novel therapies against human ovarian cancer. First, we determined whether inhibition of the catalytic tyrosine kinase activity of the receptors for vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) inhibits the formation of malignant ascites and the progressive growth of human ovarian carcinoma cells implanted into the peritoneal cavity of nude mice. Our results suggest that blockade of the VEGF/VPF receptor may be an efficient strategy to inhibit formation of malignant ascites and growth of VEGF/VPF-dependent human ovarian carcinomas. Secondly, we determined whether local sustained production of murine interferon-β could inhibit the growth of human ovarian cancer cells in the peritoneal cavity of nude mice. Our results showed that local production of IFN-β could inhibit the in vivo growth of human ovarian cancer cells by upregulating the expression of the inducible nitric oxide synthase (NOS) in host macrophages. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many human diseases, including cancers, result from aberrations of signal transduction pathways. The recent understanding of the molecular biochemistry of signal transduction in normal and transformed cells enable us to have a better insight about cancer and design new drugs to target this abnormal signaling in the cancer cells. Tyrosine kinase pathway plays a very important role in normal and cancer cells. Enhanced activity of tyrosine kinases has been associated with many human cancer types. Therefore, identifying the type of tyrosine kinases involved in a particular cancer type and blocking these tyrosine kinase pathways may provide a way to treat cancer. Receptor tyrosine kinase expression, namely epidermal growth factor receptor (EGFR) family, was examined in the oral squamous cell carcinoma patients. The expression levels of different members of the EGFR family were found to be significantly associated with shorter patients' survival. Combining EGFR, HER-2/neu, and HER-3 expression can significantly improve the predicting power. The effect of emodin, a tyrosine kinase inhibitor, on these receptors in head and neck squamous cell carcinoma cell lines was examined. Emodin was found to suppress the tyrosine phosphorylation of HER-2/neu and EGF-induced tyrosine phosphorylation of EGFR. Emodin also induced apoptosis and downregulated the expression of anti-apoptotic protein bcl-2 in oral squamous cell carcinoma cells. It is known that tyrosine kinase pathways are involved in estrogen receptor signaling pathway. Therefore, the effects of inhibiting the tyrosine kinase pathway in estrogen receptor-positive breast cancers was studied. Emodin was found to act similarly to antiestrogens, capable of inhibiting estrogen-stimulated growth and DNA synthesis, and the phosphorylation of Rb protein. Interestingly, emodin, and other tyrosine kinase inhibitors, such as RG 13022 and genistein, depleted cellular levels of estrogen receptor protein. Emodin-induced depletion of estrogen receptor was mediated by the proteasome degradation pathway. In summary, we have demonstrated that tyrosine kinase pathways play an important role in oral squamous cell carcinoma and estrogen receptor-positive breast cancer. Targeting the tyrosine kinases by inhibitors, such as emodin, may provide a potential way to treat the cancer patients. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ecteinascidin 743 (Et-743), which is a novel DNA minor groove alkylator with a unique spectrum of antitumor activity, is currently being evaluated in phase II/III clinical trials. Although the precise molecular mechanisms responsible for the observed antitumor activity are poorly understood, recent data suggests that post-translational modifications of RNA polymerase II Large Subunit (RNAPII LS) may play a central role in the cellular response to this promising anticancer agent. The stalling of an actively transcribing RNAPII LS at Et-743-DNA adducts is the initial cellular signal for transcription-coupled nucleotide excision repair (TC-NER). In this manner, Et-743 poisons TC-NER and produces DNA single strand breaks. Et-743 also inhibits the transcription and RNAPII LS-mediated expression of selected genes. Because the poisoning of TC-NER and transcription inhibition are critical components of the molecular response to Et-743 treatment, we have investigated if changes in RNAPII LS contribute to the disruption of these two cellular pathways. In addition, we have studied changes in RNAPII LS in two tumors for which clinical responses were reported in phase I/II clinical trials: renal cell carcinoma and Ewing's sarcoma. Our results demonstrate that Et-743 induces degradation of the RNAPII LS that is dependent on active transcription, a functional 26S proteasome, and requires functional TC-NER, but not global genome repair. Additionally, we have provided the first experimental data indicating that degradation of RNAPII LS might lead to the inhibition of activated gene transcription. A set of studies performed in isogenic renal carcinoma cells deficient in von Hippel-Lindau protein, which is a ubiquitin-E3-ligase for RNAPII LS, confirmed the central role of RNAPII LS degradation in the sensitivity to Et-743. Finally, we have shown that RNAPII LS is also degraded in Ewing's sarcoma tumors following Et-743 treatment and provide data to suggest that this event plays a role in decreased expression of the Ewing's sarcoma oncoprotein, EWS-Fli1. Altogether, these data implicate degradation of RNAPII LS as a critical event following Et-743 exposure and suggest that the clinical activity observed in renal carcinoma and Ewing's sarcoma may be mediated by disruption of molecular pathways requiring a fully functional RNAPII LS. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Platelets represent one of the largest storage pools of angiogenic and oncogenic growth factors in the human body. The observation that thrombocytosis (platelet count >450,000/uL) occurs in patients with solid malignancies was made over 100 years ago. However, the clinical and biological implications as well as the underlying mechanism of paraneoplastic thrombocytosis associated with ovarian carcinoma remains unknown and were the focus of the current study. Following IRB approval, patient data were collected on 619 patients from 4 U.S. centers and used to test associations between platelet count at initial diagnosis, clinicopathologic factors, and outcome. In vitro effects of plasma-purified platelets on ovarian cancer cell proliferation, docetaxel-induced apoptosis, and migration were evaluated using BrdU-PI flow cytometric and two-chamber chemotaxis assays. In vivo effects of platelet depletion on tumor growth, proliferation, apoptosis, and angiogenesis were examined using an anti-platelet antibody (anti-mouse glycoprotein 1ba, Emfret) to reduce platelets by 50%. Complete blood counts and number of mature megakaryocytes in the spleen and bone marrow were compared between control mice and ovarian cancer-bearing mice. Plasma levels of key megakaryo- and thrombopoietic factors including thrombopoietin (TPO), IL-1a, IL-3, IL-4, IL-6, IL-11, G-CSF, GM-CSF, stem cell factor, and FLT-3 ligand were assayed in a subset of 150 patients at the time of initial diagnosis with advanced stage, high grade epithelial ovarian cancer using immunobead-based cytokine profiling coupled with the Luminex® xMAP platform. Plasma cytokines significantly associated with thrombocytosis in ovarian cancer patients were subsequently evaluated in mouse models of ovarian cancer using ELISA immunoassays. The results of human and mouse plasma cytokine profiling were used to inform subsequent in vivo studies evaluating the effect of siRNA-induced silencing of select megakaryo- and thrombopoietic cytokines on paraneoplastic thrombocytosis. Thirty-one percent of patients had thrombocytosis at initial diagnosis. Compared to patients with normal platelet counts, women with thrombocytosis were significantly more likely to have advanced stage disease (p<0.001) and poor median progression-free (0.94 vs 1.35 years, p<0.001) and overall survival (2.62 vs 4.65 years, p<0.001). On multivariate analysis, thrombocytosis remained an independent predictor of decreased overall survival. Our analysis revealed that thrombocytosis significantly increases the risk of VTE in ovarian cancer patients and that thrombocytosis is an independent predictor of increased mortality in women who do develop a blood clot. Platelets increased ovarian cancer cell proliferation and migration by 4.1- and 2.8-fold (p<0.01), respectively. Platelets reduced docetaxel-induced apoptosis in ovarian cancer cells by 2-fold (p<0.001). In vivo, platelet depletion reduced tumor growth by 50%. Staining of in vivo specimens revealed decreased tumor cell proliferation (p<0.001) and increased tumor and endothelial cell apoptosis (p<0.01). Platelet depletion also significantly decreased microvessel density and pericyte coverage (p<0.001). Platelet counts increase by 31-130% in mice with invasive ovarian cancer compared to controls (p<0.01) and strongly correlate with mean megakaryocyte counts in the spleen and bone marrow (r=0.95, p<0.05). Plasma levels of TPO, IL-6, and G-CSF were significantly increased in ovarian cancer patients with thrombocytosis. Plasma levels of the same cytokines were found to be significantly elevated in orthotopic mouse models of ovarian cancer, which consistently develop paraneoplastic thromocytosis. Silencing TPO, IL-6, and G-CSF significantly abrogated paraneoplastic thrombocytosis in vivo. This study provides new understanding of the clinical and biological significance of paraneoplastic thrombocytosis in ovarian cancer and uncovers key humoral factors driving this process. Blocking the development of paraneoplastic thrombocytosis and interfering with platelet-cancer cell interactions could represent novel therapeutic strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carcinoma of the cervix is causally related to infection with the human papillomavirus (HPV), and T cells play a pivotal role in the immune response of the host to rid itself of HPV infection. Therefore, we assessed the T-cell function of women with HPV-related cervical neoplasia against a superantigen, Staphylococcus enterotoxin B (SEB). Each woman provided a cervical brush specimen for HPV DNA testing and Papanicolaou (Pap) smears for the staging of cervical lesions. They also provided a blood specimen for determination of the ability of CD4(+) T and CD8(+) T cells to synthesize Th1 (interleukin-2 [IL-2], gamma interferon [IFN-gamma], and tumor necrosis factor alpha [TNF-alpha]) and Th2 (IL-10) cytokines in response to activation with SEB. Compared with control subjects with self-attested negative Pap smears, women with high-grade squamous intraepithelial lesions (HSIL) had significantly lower percentages of activated CD4(+) T cells that produced IL-2 (P = 0.045), IFN-gamma (P = 0.040), and TNF-alpha (P = 0.015) and a significantly lower percentage of activated CD8(+) T cells that produced IL-2 (P < 0.01). These data indicate that women with HPV-related cervical HSIL show a decrease in Th1 cytokine production by activated CD4(+) T cells and suggested that compromised T-helper functions may negatively impact the function of cytotoxic CD8(+) T cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Squamous cell carcinoma of head and neck (SCCHN) is the tenth most common cancer in the world. Unfortunately, the survival of patients with SCCHN has not improved in the last 40 years. Therefore new targets for therapy are needed, and to this end we are studying signaling pathways activated by IL-6 which we have found stimulates cell migration and soft agar growth in SCCHN. Our data show that IL-6 increases TWIST expression in a transcription-independent mechanism in many SCCHN cell lines. Further investigation reveals TWIST can be phosphorylated upon IL-6 treatment. By computation prediction (http://scansite.mit.edu/motifscan_seq.phtml ), we found that TWIST has a putative phosphorylation site for casein kinase 2 (CK2) suggesting that this kinase could serve as a link between IL-6 stimulation and Twist stability. To test this hypothesis, we used a CK2 inhibitor and shRNA to CK2 and found that these interventions inhibited IL-6 stimulation of TWIST stability. In addition, mutation of the putative CK2 phosphorylation site (S18/S20A) in TWIST decreased the amount of phospho-ATP incorporated by TWIST in an in vitro kinase assay, and altered TWIST stability. In Boyd chamber migration assay and wound-healing assay, the CK2 inhibitor, DMAT, was found to decrease the motility of IL-6 stimulated SCCHN cells and over expression of either a wild-type or the hyperphosphorylated mimicking mutant S18/20D –Twist rather than the hypo-phosphorylated mimicking mutant S18/20A-Twist can promote SCCHN cell motility.To our knowledge, this is the first report to identify the importance of IL-6 stimulated CK2 phosphorylation of TWIST in SCCHN. As CK2 inhibitors are currently under phase I clinical trials, our findings indicate that CK2 may be a viable therapeutic target in SCCHN. Therefore, further pre-clinical studies of this inhibitor are underway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The tumor microenvironment is comprised of a vast array of heterogeneous cells including both normal and neoplastic cells. The tumor stroma recruitment process has been exploited for an effective gene delivery technique using bone marrow derived MSC. Targeted migration of the MSC toward the tumor microenvironment, while successful, is not yet fully understood. This study was designed to assess the role of CD44 in the migration of MSC toward the tumor microenvironment and to determine the implications of CD44-deficient MSC within the tumor stroma. Inhibition of MSC migration was evaluated through a variety of methods in vitro and in vivo including CD44 receptor knockdown, CD44 antagonists, CD44 neutralizing antibodies and small molecule inhibitor of matrix metalloproteinases. Blocking CD44 signaling through MMP inhibition was characterized by lack of intracellular domain cleavage and lead to the decrease in Twist gene expression. A functional relationship between CD44 and Twist expression was confirmed by chromatin immunoprecipitation. Next, a series of murine tumor models were used to examine the role of CD44 deficient stroma within the tumor microenvironment. Labeled transgenic CD44 knockout (KO) MSC or wild type (WT) C57/B6 MSC were used to analyze the stromal incorporation within murine breast carcinomas (EO771 and 4T1). Subsequent tumors were analyzed for vessel formation (CD31), and the presence of tumor associated fibroblast (TAF) markers, α-smooth muscle actin (α-SMA), fibroblast activation protein (FAP), and fibroblast specific protein (FSP). The tumors with CD44KO MSC cells had less vessel formation than the tumors with WT MSC. The lack of fibroblastic TAF population as defined by FAP/FSP expression by the CD44KO MSC admixed tumors suggest that the bone marrow derived population of MSC were unable to contribute to the fibroblastic stromal population. Subsequently, a bone marrow transplantation experiment confirmed the endogenous migratory deficiencies of the CD44KO bone marrow derived stromal cells toward the tumor microenvironment in vivo. WT mice with CD44KO bone marrow had less CD44KOderived tumor stroma compared to mice with WT bone marrow. These results indicate that CD44 is crucial to stromal cell migration and incorporation to the tumor microenvironment as TAF.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: Resistance to platinum chemotherapy remains a significant problem in ovarian carcinoma. Here, we examined the biological mechanisms and therapeutic potential of targeting a critical platinum resistance gene, ATP7B, using both in vitro and in vivo models. EXPERIMENTAL DESIGN: Expression of ATP7A and ATP7B was examined in ovarian cancer cell lines by real-time reverse transcription-PCR and Western blot analysis. ATP7A and ATP7B gene silencing was achieved with targeted small interfering RNA (siRNA) and its effects on cell viability and DNA adduct formation were examined. For in vivo therapy experiments, siRNA was incorporated into the neutral nanoliposome 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC). RESULTS: ATP7A and ATP7B genes were expressed at higher levels in platinum-resistant cells compared with sensitive cells; however, only differences in ATP7B reached statistical significance. ATP7A gene silencing had no significant effect on the sensitivity of resistant cells to cisplatin, but ATP7B silencing resulted in 2.5-fold reduction of cisplatin IC(50) levels and increased DNA adduct formation in cisplatin-resistant cells (A2780-CP20 and RMG2). Cisplatin was found to bind to the NH(2)-terminal copper-binding domain of ATP7B, which might be a contributing factor to cisplatin resistance. For in vivo therapy experiments, ATP7B siRNA was incorporated into DOPC and was highly effective in reducing tumor growth in combination with cisplatin (70-88% reduction in both models compared with controls). This reduction in tumor growth was accompanied by reduced proliferation, increased tumor cell apoptosis, and reduced angiogenesis. CONCLUSION: These data provide a new understanding of cisplatin resistance in cancer cells and may have implications for therapeutic reversal of drug resistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human papilloma virus (HPV) infection of the uterine cervix is linked to the pathogenesis of cervical cancer. Preclinical in vitro and in vivo studies using HPV-containing human cervical carcinoma cell lines have shown that the mammalian target of rapamycin (mTOR) inhibitor, rapamycin, and epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor, erlotinib, can induce growth delay of xenografts. Activation of Akt and mTOR are also observed in cervical squamous cell carcinoma and, the expression of phosphorylated mTOR was reported to serve as a marker to predict response to chemotherapy and survival of cervical cancer patients. Therefore, we investigated: a) the expression level of EGFR in cervical squamous cell carcinoma (SCC) and high-grade squamous intraepithelial lesions (HSIL) versus non-neoplastic cervical squamous epithelium; b) the state of activation of the mTOR pathway in these same tissues; and c) any impact of these signal transduction molecules on cell cycle. Formalin-fixed paraffin-embedded tissue microarray blocks containing 20 samples each of normal cervix, HSIL and invasive SCC, derived from a total of 60 cases of cervical biopsies and cervical conizations were examined. Immunohistochemistry was utilized to detect the following antigens: EGFR; mTOR pathway markers, phosphorylated (p)-mTOR (Ser2448) and p-p70S6K (Thr389); and cell cycle associated proteins, Ki-67 and S phase kinase-associated protein (Skp)2. Protein compartmentalization and expression were quantified in regard to proportion (0-100%) and intensity (0-3+). Mitotic index (MI) was also assessed. An expression index (EI) for pmTOR, p-p70S6K and EGFR, respectively was calculated by taking the product of intensity score and proportion of positively staining cells. We found that plasmalemmal EGFR expression was limited to the basal/parabasal cells (2-3+, EI = 67) in normal cervical epithelium (NL), but was diffusely positive in all HSIL (EI = 237) and SCC (EI 226). The pattern of cytoplasmic p-mTOR and nuclear p-p70S6K expression was similar to that of EGFR; all showed a significantly increased EI in HSIL/SCC versus NL (p<0.02). Nuclear translocation of p-mTOR was observed in all SCC lesions (EI = 202) and was significantly increased versus both HSIL (EI = 89) and NL (EI = 54) with p<0.015 and p<0.0001, respectively. Concomitant increases in MI and proportion of nuclear Ki-67 and Skp2 expression were noted in HSIL and SCC. In conclusion, morphoproteomic analysis reveals constitutive activation and overexpression of the mTOR pathway in HSIL and SCC as evidenced by: increased nuclear translocation of pmTOR and p-p70S6K, phosphorylated at putative sites of activation, Ser2448 and Thr389, respectively; correlative overexpression of the upstream signal transducer, EGFR, and increases in cell cycle correlates, Skp2 and mitotic indices. These results suggest that the mTOR pathway plays a key role in cervical carcinogenesis and targeted therapies may be developed for SCC as well as its precursor lesion, HSIL.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: High grade serous carcinoma whether ovarian, tubal or primary peritoneal, continues to be the most lethal gynecologic malignancy in the USA. Although combination chemotherapy and aggressive surgical resection has improved survival in the past decade the majority of patients still succumb to chemo-resistant disease recurrence. It has recently been reported that amplification of 5q31-5q35.3 is associated with poor prognosis in patients with high grade serous ovarian carcinoma. Although the amplicon contains over 50 genes, it is notable for the presence of several members of the fibroblast growth factor signaling axis. In particular acidic fibroblast growth factor (FGF1) has been demonstrated to be one of the driving genes in mediating the observed prognostic effect of the amplicon in ovarian cancer patients. This study seeks to further validate the prognostic value of fibroblast growth receptor 4 (FGFR4), another candidate gene of the FGF/FGFR axis located in the same amplicon. The emphasis will be delineating the role the FGF1/FGFR4 signaling axis plays in high grade serous ovarian carcinoma; and test the feasibility of targeting the FGF1/FGFR4 axis therapeutically. Materials and Methods: Spearman and Pearson correlation studies on data generated from array CGH and transcriptome profiling analyses on 51 microdissected tumor samples were used to identify genes located on chromosome 5q31-35.3 that showed significant correlation between DNA and mRNA copy numbers. Significant correlation between FGF1 and FGFR4 DNA copy numbers was further validated by qPCR analysis on DNA isolated from 51 microdissected tumor samples. Immunolocalization and quantification of FGFR4 expression were performed on paraffin embedded tissue samples from 183 cases of high-grade serous ovarian carcinoma. The expression was then correlated with clinical data to assess impact on survival. The expression of FGF1 and FGFR4 in vitro was quantified by real-time PCR and western blotting in six high-grade serous ovarian carcinoma cell lines and compared to those in human ovarian surface epithelial cells to identify overexpression. The effect of FGF1 on these cell lines after serum starvation was quantified for in vitro cellular proliferation, migration/invasion, chemoresistance and survival utilizing a combination of commercially available colorimetric, fluorometric and electrical impedance assays. FGFR4 expression was then transiently silenced via siRNA transfection and the effects on response to FGF1, cellular proliferation, and migration were quantified. To identify relevant cellular pathways involved, responsive cell lines were transduced with different transcription response elements using the Cignal-Lenti reporter system and treated with FGF1 with and without transient FGFR4 knock down. This was followed by western blot confirmation for the relevant phosphoproteins. Anti-FGF1 antibodies and FGFR trap proteins were used to attempt inhibition of FGF mediated phenotypic changes and relevant signaling in vitro. Orthotopic intraperitoneal tumors were established in nude mice using serous cell lines that have been previously transfected with luciferase expressing constructs. The mice were then treated with FGFR trap protein. Tumor progression was then followed via bioluminescent imaging. The FGFR4 gene from 52 clinical samples was sequenced to screen for mutations. Results: FGFR4 DNA and mRNA copy numbers were significantly correlated and FGFR4 DNA copy number was significantly correlated with that of FGF1. Survival of patients with high FGFR4 expressing tumors was significantly shorter that those with low expression(median survival 28 vs 55 month p< 0.001) In a multivariate cox regression model FGFR expression significantly increased risk of death (HR 2.1, p<0.001). FGFR4 expression was significantly higher in all cell lines tested compared to HOSE, OVCA432 cell line in particular had very high expression suggesting amplification. FGF1 was also particularly overexpressed in OVCA432. FGF1 significantly increased cell survival after serum deprivation in all cell lines. Transient knock down of FGFR4 caused significant reduction in cell migration and proliferation in vitro and significantly decreased the proliferative effects of FGF1 in vitro. FGFR1, FGFR4 traps and anti-FGF1 antibodies did not show activity in vitro. OVCA432 transfected with the cignal lenti reporter system revealed significant activation of MAPK, NFkB and WNT pathways, western blotting confirmed the results. Reverse phase protein array (RPPA) analysis also showed activation of MAPK, AKT, WNT pathways and down regulation of E Cadherin. FGFR trap protein significantly reduced tumor growth in vivo in an orthotopic mouse model. Conclusions: Overexpression and amplification of several members of the FGF signaling axis present on the amplicon 5q31-35.3 is a negative prognostic indicator in high grade serous ovarian carcinoma and may drive poor survival associated with that amplicon. Activation of The FGF signaling pathway leads to downstream activation of MAPK, AKT, WNT and NFkB pathways leading to a more aggressive cancer phenotype with increased tumor growth, evasion of apoptosis and increased migration and invasion. Inhibition of FGF pathway in vivo via FGFR trap protein leads to significantly decreased tumor growth in an orthotopic mouse model.