26 resultados para Nf-kappa B
Resumo:
The expression of P-glycoproteins encoded by the mdr gene family is associated with the emergence of multidrug-resistance phenotype in animal cells. This gene family includes two members, MDR1 and MDR2, in humans, and three members, mdr1a, mdr1b, and mdr2, in rodents. Among them, the rat mdr1b is known to be highly activated during hepatocarcinogenesis, and its expression is sensitive to the treatment with growth factors, cytotoxic drugs, as well as other physical or chemical stresses. It is believed that the transcriptional regulation plays an important role in above events, however little has been known about mechanisms involved.^ To elucidate how mdr1b expression is regulated, we isolated the genomic sequence of the rat mdr1b and functionally dissected its 5$\prime$ promoter region. Our results demonstrated that: (1) the transcription start site of the rat mdr1b is identical to that of the murine mdr1b homologue; (2) a palindromic sequence from bp $-$189 to $-$180 bp is essential for the basal promoter function of the rat mdr1b, and binds to a specific protein that appears to be a novel transcription factor implicated in the regulation of the rat mdr1b expression; (3) a NF-$\kappa$B-binding site from bp $-$167 to $-$159 is also involved in the basal promoter function. The p65/p50 subunits of the NF-$\kappa$B and raf-1 kinase are implicated in the insulin-inducible promoter activity of the mdr1b, suggesting the important role of NF-$\kappa$B in the regulation of the mdr1b by growth factors; (4) a p53-binding site from bp $-$199 to $-$180 is not only essential for the basal promoter activity but also responsible for the induction of mdr1b by cytotoxic agents. In addition, we provided evidence showing that endogenous mdr1b expression can be modulated by wild-type p53. On the basis of these findings, a model of transcriptional regulation of the rat mdr1b was proposed. ^
Resumo:
Chronic exposure of the airways to cigarette smoke induces inflammatory response and genomic instability that play important roles in lung cancer development. Nuclear factor kappa B (NF-κB), the major intracellular mediator of inflammatory signals, is frequently activated in preneoplastic and malignant lung lesions. ^ Previously, we had shown that a lung tumor suppressor GPRC5A is frequently repressed in human non-small cell lung cancers (NSCLC) cells and lung tumor specimens. Recently, other groups have shown that human GPRC5A transcript levels are higher in bronchial samples of former than of current smokers. These results suggested that smoking represses GPRC5A expression and thus promotes the occurrence of lung cancer. We hypothesized that cigarette smoking or associated inflammatory response repressed GPRC5A expression through NF-κB signaling. ^ To determine the effect of inflammation, we examined GPRC5A protein expression in several lung cell lines following by TNF-α treatment. TNF-α significantly suppressed GPRC5A expression in normal small airway epithelial cells (SAEC) as well as in Calu-1 cells. Real-time PCR analysis indicated that TNF-α inhibits GPRC5A expression at the transcriptional level. NF-κB, the major downstream effectors of TNF-α signaling, mediates TNF-α-induced repression of GPRC5A because over-expression of NF-κB suppressed GPRC5A. To determine the region in the GPRC5A promoter through which NF-κB acts, we examined the ability of TNF-α to inhibit a series of reporter constructs with different deletions of GPRC5A promoter. The luciferase assay showed that the potential NF-κB binding sites containing region are irresponsible for TNF-α-induced suppression. Further analysis using constructs with different deletions in p65 revealed that NF-κB-mediated repression of GPRC5A is transcription-independent. Co-immunoprecipitation assays revealed that NF-κB could form a complex with RAR/RXR heterodimer. Moreover, the inhibitory effect of NF-κB has been found to be proportional to NF-κB/RAR ratio in luciferase assay. Finally, Chromatin IP demonstrated that NF-κB/p65 bound to GPRC5A promoter as well as RAR/RXR and suppressed transcription. Taken together, we propose that inflammation-induced NF-κB activation disrupts the RA signaling and suppresses GPRC5A expression and thus contributes to the oncogenesis of lung cancer. Our studies shed new light on the pathogenesis of lung cancer and potentially provide novel interventions for preventing and treating this disease. ^
Resumo:
Hyper IgE syndrome (HIES) is a multisystem disorder resulting in bone and immune system abnormalities. It is associated with mutations in STAT3, which disrupt protein domains responsible for transcriptional function. Patients with HIES display osteoporosis and enhanced inflammatory cytokine production similar to hematopoietic Stat3-deficient mice. Since osteoclast and inflammatory cytokine genes are NFκB targets, these observations indicate a possible deregulation of NFκB signaling in both mice and humans with STAT3-deficiency. Here, we sought to examine the role of STAT3 in the regulation of NFκB-mediated gene expression through analysis of three HIES STAT3 point mutations in both hematopoietic and non- hematopoietic cells. We found that IL-6-induced tyrosine phosphorylation of STAT3 was partially or completely abrogated by HIES mutations in the transactivation domain (V713L) or SH2 domain (V637M), respectively, in both hematopoietic and non- hematopoietic cells. By contrast, IL-6-induced tyrosine phosphorylation of an HIES mutant in the STAT3 DNA-binding domain (R382W) was intact. The R382W and V713L mutants significantly reduced IL-6-dependent STAT3 transcriptional activity in reporter gene assays. Moreover, the R382W and V637M mutants significantly diminished IL-6-responsive expression of the endogenous STAT3 target gene, Socs3, as assessed by quantitative real-time PCR (qPCR) in the RAW macrophage cell line. These observations indicate the HIES mutants dominantly suppress the transcriptional activity of wild type STAT3, albeit to varying degrees. All three HIES mutants enhanced LPS-induced expression of the NFκB target genes IL6 (IL-6), Cxcl10 (IP- 10), and Tnf (TNFα) in RAW cells, as indicated by qPCR. Furthermore, overexpression of wild type STAT3 in Stat3-deficient murine embryonic fibroblasts significantlyreduced LPS-stimulated expression of IL6, Cxcl10, and IL12p35. In addition, in aprimary murine osteoclast differentiation assay, a STAT3-specific SH2 domain inhibitor led to significantly increased levels of osteoclast-specific gene expression. These results suggest that STAT3 serves as a negative regulator of NFκB-mediated gene expression, and furthermore imply that STAT3 mutations associated with HIES contribute to the osteopenia and inflammation observed in HIES patients.
Resumo:
Endoplasmic reticulum (ER) stress-induced inflammation plays an important role in the progression of many diseases, such as type II diabetes, insulin resistance, cancers, and so on. NF-κB is believed to be a central regulator of ER stress-induced inflammation. However, studies on how ER stress induces NF-κB activation are limited and, in some cases, controversial. In the present study, we utilized two commonly used ER stress inducers, thapsigargin and tunicamycin, to study the mechanism. We found that two caspase-recruitment domain (CARD)-containing proteins, CARMA3 and BCL10, play a crucial roles on ER stress-induced NF-κB activation by regulating IκBα kinase activity. Consistently, we observed that a physiological ER stress inducer, hypoxia, could activate NF-κB in a CARMA3-dependent manner. Additionally, we showed that the activation of the UPR signaling pathways were intact in both CARMA3- and BCL10-deficient cells under ER stress. Together, this study provides insight into the mechanism of how ER stress induces NF-κB activation. It allows us to better understand ER stress-induced inflammation and develop the corresponding therapeutic interference to treat diseases
Resumo:
Non-Hodgkin's Lymphomas (NHL) are a group (>30) of important human lymphoid cancers that unlike other tumors today, are showing a marked increase in incidence. The lack of insight to the pathogenesis of B-cell NHL poses a significant problem in the early detection and effective treatment of these malignancies. This study shows that large B-cell lymphoma (LBCL) cells, the most common type of B-cell NHL (account for more than 30% of cases), have developed a novel mechanism for autonomous neoplastic B cell growth. We have identified that the key transcription factor NF-κB, is constitutively activated in LBCL cell lines and primary biopsy-derived LBCL cells, suggesting that they are autonomously activated, and do not require accessory T-cell signaling for cell growth and survival. Further studies have indicated that LBCL cells ectopically express an important T-cell associated co-mitogenic factor, CD154 (CD40 ligand), that is able to internally activate the CD401NF-κB pathway, through constitutive binding to its cognate receptor, CD40, on the lymphoma cell surface. CD40 activation triggers the formation of a “Signalosome” comprising virtually the entire canonical CD40/NF-κB signaling pathway that is anchored by CD40 in plasma membrane lipid rafts. The CD40 Signalosome is vulnerable to interdiction by antibody against CD40 that disrupts the Signalosome and induces cell death in the malignant cells. In addition to constitutive NF-κB activation, we have found that the nuclear factor of activated T cells (NFAT) transcription factor is also constitutively activated in LBCL cells. We have demonstrated that the constitutively active NFATc1 and c-rel members of the NFAT and NF-κB families of transcription factors, respectively, interact with each other, bind to the CD154 promoter, and synergistically activate CD154 gene transcription. Down-regulation of NFATc1 and c-rel with small interfering RNA inhibits CD154 gene transcription and lymphoma cell growth. Our findings suggest that continuous CD40 activation not only provides dysregulated proliferative stimuli for lymphoma cell growth and extended tumor cell survival, but also allows continuous regeneration of the CD40 ligand in the lymphoma cell and thereby recharges the system through a positive feedback mechanism. Targeting the CD40/NF-κB signaling pathway could provide potential therapeutic modalities for LBCL cells in the future. ^
Resumo:
The β-catenin pathway plays an important role in the progression of colon cancer as well as many other cancer types. Almost all colorectal tumors show an upregulation of β-catenin activity either through mutations in the β-catenin regulator APC or through mutations in β-catenin itself. Upregulation of β-catenin leads to the transcription of many target genes involved in tumorigenesis. NF-κB is a transcription factor which activates many target genes, including both anti-apoptotic and pro-apoptotic molecules. Recently, it has been shown that GSK-3β, a negative regulator of β-catenin, is involved in the activation of NF-κB. However, the mechanism of this regulation of NF-κB by GSK-3β is unclear. As GSK-3β inhibits β-catenin we hypothesized that β-catenin may be responsible for the regulation of NF-κB by GSK-3β; i.e. β-catenin may inhibit NF-κB activity. In this study we show that β-catenin physically interacts with NF-κB leading to the inhibition of NF-κB transcriptional and DNA-binding activities. We also show that in colon cancer cells with high β-catenin expression there is a suppressed NF-κB activity and depletion of β-catenin increases NF-κB activity. Similarly, in colon cancer cells that have a low level of β-catenin NF-κB activity is high and introduction of β-catenin reduces NF-κB activity. Importantly, we show that this suppression of NF-κB by β-catenin leads to a reduction of NF-κB target gene Fas expression. Also Fas-mediated apoptosis is reduced in β-catenin overexpressing cells, which can be reversed upon depletion of β-catenin. Introduction of the NF-κB subunit p65 can restore Fas expression indicating that the effect of β-catenin on Fas is through NF-κB. Furthermore, β-catenin expression was found to inversely correlate with Fas expression in human colon and breast primary tumor tissues. As Fas downregulation is important for tumors to evade immune surveillance, β-catenin inhibition of NF-κB and Fas downregulation likely plays and important role for colon cancer progression. Additionally, we found that phosphoinositide 3-kinase plays a role in the regulation of β-catenin inhibition of NF-κB through the disruption of the β-catenin/NF-κB complex. This study provides a link between two important signal transduction pathways as well as another mechanism of β-catenin oncogenesis. ^
Resumo:
Pancreatic adenocarcinoma is the fourth leading cause of adult cancer death in the United States. At the time of diagnosis, most patients with pancreatic cancer have advanced and metastatic disease, which makes most of the traditional therapeutic strategies are ineffective for pancreatic cancer. A better understanding of the molecular basis of pancreatic cancer will provide the approach to identify the new strategies for early diagnosis and treatment. NF-κB is a family of transcription factor that play important roles in immune response, cell growth, apoptosis, and tumor development. We have shown that NF-κB is constitutively activated in most human pancreatic tumor tissues and cell lines, but not in the normal tissues and HPV E6E7 gene-immortalized human pancreatic ductal epithelial cells (HPDE/E6E7). By infecting the pancreatic cancer cell line Aspc-1 with a replication defective retrovirus expressing phosphorylation-defective IκBα (IκBαM), the constitutive NF-κB activation is blocked. Subsequent injection of this Aspc-1/IκBαM cells into the pancreas of athymic nude mice showed that liver metastasis is suppressed by the blockade of NF-κB activation. Current studies showed that an autocrine mechanism accounts for the constitutive activation of NF-κB in metastatic human pancreatic cancer cell lines, but not in nonmetastatic human pancreatic cancer cell lines. Further investigation showed that interleukin-1α (IL-1α) was the primary cytokine secreted by these cells that activates NF-κB. Inhibition of IL-1α activity suppressed the constitutive activation of NF-κB and the expression of its downstream target gene, uPA, in metastatic pancreatic cancer cell lines. Even though IL-1α is one of the previously identified NF-κB downstream target genes, our results demonstrate that regulation of IL-1α expression is independent of NF-κB and primarily dependent on AP-1 activity, which is in part induced by overexpression of EGF receptors and activation of MAP kinases. In conclusion, our findings suggest a possible mechanism by which NF-κB is constitutively activated in metastatic human pancreatic cancer cells and a possible missing mechanistic links between inflammation and cancer. ^
Resumo:
B-lymphocyte stimulator (BLyS also called BAFF), is a potent cell survival factor expressed in many hematopoietic cells. BLyS levels are elevated in the serum of non-Hodgkin lymphoma (NHL) patients, and have been reported to be associated with disease progression, and prognosis. To understand the mechanisms involved in BLyS gene expression and regulation, we examined expression, function, and regulation of the BLyS gene in B cell non-Hodgkin's lymphoma (NHL-B) cells. BLyS is constitutively expressed in aggressive NHL-B cells including large B cell lymphoma (LBCL) and mantle cell lymphoma (MCL) contributing to survival and proliferation of malignant B cells. Two important transcription factors, NF-κB and NFAT, were found to be involved in regulating BLyS expression through at least one NF-κB and two NFAT binding sites in the BLyS promoter. Further study indicates that the constitutive activation of NF-κB and BLyS in NHL-B cells forms a positive feedback loop contributing to cell survival and proliferation. In order to further investigate BLyS signaling pathway, we studied the function of BAFF-R, a major BLyS receptor, on B cells survival and proliferation. Initial study revealed that BAFF-R was also found in the nucleus, in addition to its presence on plasma membrane of B cells. Nuclear presentation of BAFF-R can be increased by anti-IgM and soluble BLyS treatment in normal peripheral B lymphocytes. Inhibition of BLyS expression decreases nuclear BAFF-R level in LBCL cells. Furthermore, we showed that BAFF-R translocated to nucleus through the classic karyopherin pathway. A candidate nuclear localization sequence (NLS) was identified in the BAFF-R protein sequence and mutation of this putative NLS can block BAFF-R entering nucleus and LBCL cell proliferation. Further study showed that BAFF-R co-localized with NF-κB family member, c-rel in the nucleus. We also found BAFF-R mediated transcriptional activity, which could be increased by c-rel. We also found that nuclear BAFF-R could bind to the NF-κB binding site on the promoters of NF-κB target genes such as BLyS, CD154, Bcl-xL, Bfl-1/A1 and IL-8. These findings indicate that BAFF-R may also promote survival and proliferation of normal B cells and NHL-B cells by directly functioning as a transcriptional co-factor with NF-κB family member. ^
Resumo:
The central dogma of molecular biology dictates that DNA is transcribed into RNA, which is later translated into protein. One of the early activators in this process is the transcription factor NF-κB. We have determined that an NF-κB inducer, CARMA3, is required for proper neural tube closure, similar to other NF-κB inducers. Using a genetic knockout of CARMA3, we demonstrated that it is required for Gαq-coupled GPCR-induced NF-κB activation. This is facilitated through a MAPK and IKK phosphorylation-independent mechanism, most likely by controlling NEMO-associated ubiquitination. We have also shown that CARMA3 is required for EGF and HRG-induced NF-κB activation. This activation requires the activity of both EGFR and HER2, as well as PKC. Again, we observed no defect in IKK phosphorylation, although we determined a clear defect in IKK activation. Finally, we have begun to determine the role of CARMA3 to both EGFR and HER2-induced tumorigenicity. By overexpressing a constitutive active mutant of HER2 in our CARMA3 WT and KO MEF cells, we have shown CARMA3 is important for HER2-driven soft agar colony growth. We have also shown that knockdown of endogenous CARMA3 in the EGFR-overexpressing A431 cell line abolishes EGF-induced NF-κB activation. These same cells have a dramatically reduced capacity to form colonies in soft agar as well. Using both mouse xenografts and a transgenic model of HER2-induced breast cancer, we have initiated studies which will help to determine the role of CARMA3 to in vivo tumorigenesis. Collectively, this work reveals novel roles for the CARMA3 protein in development, GPCR and EGFR/HER2 signaling. It also suggests that CARMA3 is involved in EGFR/HER2 mediated tumorigenesis, possibly indicating a novel therapeutic target for use in treatment of cancer. ^
Resumo:
Lysophosphatidic acid (LPA) is a bioactive phospholipid and binds to its receptors, a family of G protein-coupled receptors (GPCR), which initiates multiple signaling cascades and leads to activation of several transcription factors, including NF-κB. NF-κB critically regulates numerous gene expressions, and is persistently active in many diseases. In our previous studies, we have demonstrated that LPA-induced NF-κB activation is dependent on a novel scaffold protein, CARMA3. However, how CARMA3 is recruited to receptor remains unknown. β-Arrestins are a family of proteins involved in desensitization of GPCR signaling. Additionally, β-arrestins function as signaling adaptor proteins, and mediate multiple signaling pathways. Therefore, we have hypothesized that β-arrestins may link CARMA3 to LPA receptors, and facilitate LPA-induced NF-κB activation. ^ Using β-arrestin-deficient MEFs, we found that β-arrestin 2, but not β-arrestin 1, was required for LPA-induced NF-κB activation. Also, we showed that the expression of NF-κB-dependent cytokines, such as interlukin-6, was impaired in β-arrestin 2-deficient MEFs. Mechanistically, we demonstrated the inducible association of endogenous β-arrestin 2 and CARMA3, and we found the CARD domain of CARMA3 interacted with 60-320 residues of β-arrestin 2. To understand why β-arrestin 2, but not β-arrestin 1, mediated NF-κB activation, we generated β-arrestin mutants. However, some mutants degraded quickly, and the rest did not rescue NF-κB activation in β-arrestin-deficient MEFs, though they had similar binding affinities with CARMA3. Therefore, it indicates that slight changes in residues may determine the different functions of β-arrestins. Moreover, we found β-arrestin 2 deficiency impaired LPA-induced IKK kinase activity, while it did not affect LPA-induced IKKα/β phosphorylation. ^ In summary, our results provide the genetic evidence that β-arrestin 2 serves as a positive regulator in NF-κB signaling pathway by connecting CARMA3 to LPA receptors. Additionally, we demonstrate that β-arrestin 2 is required for IKKα/β activation, but not for the inducible phosphorylation of IKKα/β. Because the signaling pathways around the membrane-proximal region of LPA receptors and GPCRs are quite conserved, our results also suggest a possible link between other GPCRs and CARMA3-mediated NF-κB activation. To fully define the role of β-arrestins in LPA-induced NF-κB signaling pathways will help to identify new drug targets for clinical therapeutics.^
Resumo:
The aberrant activation of signal transduction pathways has long been linked to uncontrolled cell proliferation and the development of cancer. The activity of one such signaling module, the Mitogen-Activated Protein Kinase (MAPK) pathway, has been implicated in several cancer types including pancreatic, breast, colon, and lymphoid malignancies. Interestingly, the activation of MAP-Kinase-Kinase-Kinase proteins often leads to the additional activation of NF-κB, a transcription factor that acts as a cell survival signal through its control of antiapoptotic genes. We have investigated the role of a specific dimer form of the NF-κB transcription factor family, NF-κB1 (p50) homodimers, in its control of the proto-oncogene, Bcl-2, and we have identified the MEK/ERK (MAPK) signaling cascade as a mediator of NF-κB1 activity. ^ Two murine B cell lymphoma cell lines were used for these studies: LY-as, an apoptosis proficient line with low Bcl-2 protein expression and no nuclear NF-κB activity, and LY-ar, a nonapoptotic line with constitutive p50 homodimer activity and 30 times more Bcl-2 protein expression than LY-as. Experiments modulating p50 activity correlated the activation of p50 homodimers with Bcl-2 expression and additional gel shift experiments demonstrated that the Bcl-2 P1 promoter had NF-κB sites with which recombinant p50 was able to interact. In vitro transcription revealed that p50 enhanced the production of transcripts derived from the Bcl-2 P1 promoter. These data strongly suggest that Bcl-2 is a target gene for p50-mediated transcription and suggest that the activation of p50 homodimers contributes to the expression of Bcl-2 observed in LY-ar cells. ^ Studies of upstream MAPK pathways that could influence NF-κB activity demonstrated that LY-ar cells had phosphorylated ERK proteins while LY-as cells did not. Treatment of LY-ar cells with the MEK inhibitors PD 98059, U0126, and PD 184352 led to a loss of phosphorylated ERK, a reversal of nuclear p50 homodimer DNA binding, and a decrease in the amount of Bcl-2 protein expression. Similarly, the activation of the MEK/ERK pathway in LY-as cells by phorbol ester led to Bcl-2 expression that could be blocked by PD 98059. Furthermore, treatment of LY-ar cells with TNFα, an IKK activator, did not change the suppressive effect of PD 98059 on p50 homodimer activity, suggesting an IKK-independent pathway for p50 homodimer activation. Lastly, all three MEK inhibitors sensitized LY-ar cells to radiation-induced apoptosis. ^ These data indicate that the activation of the MEK/ERK MAP-Kinase signaling pathway acts upstream of p50 homodimer activation and Bcl-2 expression in this B cell lymphoma cell system and suggest that the activation of MEK/ERK may be a key step in the progression of lymphoma to advanced-staged disease. Other researchers have used MEK inhibitors to inhibit cell growth and sensitize a number of tumors to chemotherapies. In light of our data, MEK inhibitors may additionally be useful clinically to radiosensitize cancers of lymphoid origin. ^