24 resultados para Negative Binomial Regression Model (NBRM)
Resumo:
Background. In Dr. Mel Greaves "delayed-infection hypothesis," postponed exposure to common infections increases the likelihood of childhood cancer. Hygienic advancements in developed countries have reduced children's exposure to pathogens and children encounter common infectious agents at an older age with an immune system unable to deal with the foreign antigens. Vaccinations may be considered to be simulated infections as they prompt an antigenic response by the immune system. Vaccinations may regulate the risk of childhood cancer by modulating the immune system. The aim of the study was to determine if children born in Texas counties with higher levels of vaccination coverage were at a reduced risk for childhood cancer.^ Methods. We conducted a case-control study to examine the risk of childhood cancers, specifically leukemia, brain tumors, and non-Hodgkin lymphoma, in relation to vaccination rates in Texas counties. We utilized a multilevel mixed-effects regression model of the individual data from the Texas Cancer Registry (TCR) with group-level exposure data (i.e., the county- and public health region-level vaccination rates).^ Results. Utilizing county-level vaccination rates and controlling for child's sex, birth year, ethnicity, birth weight, and mother's age at child's birth the hepatitis B vaccine revealed negative associations with developing all cancer types (OR = 0.81, 95% CI: 0.67–0.98) and acute lymphoblastic leukemia (ALL) (OR = 0.63, 95% CI: 0.46–0.88). The decreased risk for ALL was also evident for the inactivated polio vaccine (IPV) (OR = 0.67, 95% CI: 0.49–0.92) and 4-3-1-3-3 vaccination series (OR = 0.62, 95% CI: 0.44-0.87). Using public health region vaccine coverage levels, an inverse association between the Haemophilus influenzae type b (Hib) vaccine and ALL (OR: 0.58; 95% CI: 0.42–0.82) was present. Conversely, the measles, mumps, and rubella (MMR) vaccine resulted in a positive association with developing non-Hodgkin lymphoma (OR = 2.81, 95% CI: 1.27–6.22). ^
Resumo:
Gastroesophageal reflux disease is a common condition affecting 25 to 40% of the population and causes significant morbidity in the U.S., accounting for at least 9 million office visits to physicians with estimated annual costs of $10 billion. Previous research has not clearly established whether infection with Helicobacter pylori, a known cause of peptic ulcer, atrophic gastritis and non cardia adenocarcinoma of the stomach, is associated with gastroesophageal reflux disease. This study is a secondary analysis of data collected in a cross-sectional study of a random sample of adult residents of Ciudad Juarez, Mexico, that was conducted in 2004 (Prevalence and Determinants of Chronic Atrophic Gastritis Study or CAG study, Dr. Victor M. Cardenas, Principal Investigator). In this study, the presence of gastroesophageal reflux disease was based on responses to the previously validated Spanish Language Dyspepsia Questionnaire. Responses to this questionnaire indicating the presence of gastroesophageal reflux symptoms and disease were compared with the presence of H. pylori infection as measured by culture, histology and rapid urease test, and with findings of upper endoscopy (i.e., hiatus hernia and erosive and atrophic esophagitis). The prevalence ratio was calculated using bivariate, stratified and multivariate negative binomial logistic regression analyses in order to assess the relation between active H. pylori infection and the prevalence of gastroesophageal reflux typical syndrome and disease, while controlling for known risk factors of gastroesophageal reflux disease such as obesity. In a random sample of 174 adults 48 (27.6%) of the study participants had typical reflux syndrome and only 5% (or 9/174) had gastroesophageal reflux disease per se according to the Montreal consensus, which defines reflux syndromes and disease based on whether the symptoms are perceived as troublesome by the subject. There was no association between H. pylori infection and typical reflux syndrome or gastroesophageal reflux disease. However, we found that in this Northern Mexican population, there was a moderate association (Prevalence Ratio=2.5; 95% CI=1.3, 4.7) between obesity (≥30 kg/m2) and typical reflux syndrome. Management and prevention of obesity will significantly curb the growing numbers of persons affected by gastroesophageal reflux symptoms and disease in Northern Mexico. ^
Resumo:
Strategies are compared for the development of a linear regression model with stochastic (multivariate normal) regressor variables and the subsequent assessment of its predictive ability. Bias and mean squared error of four estimators of predictive performance are evaluated in simulated samples of 32 population correlation matrices. Models including all of the available predictors are compared with those obtained using selected subsets. The subset selection procedures investigated include two stopping rules, C$\sb{\rm p}$ and S$\sb{\rm p}$, each combined with an 'all possible subsets' or 'forward selection' of variables. The estimators of performance utilized include parametric (MSEP$\sb{\rm m}$) and non-parametric (PRESS) assessments in the entire sample, and two data splitting estimates restricted to a random or balanced (Snee's DUPLEX) 'validation' half sample. The simulations were performed as a designed experiment, with population correlation matrices representing a broad range of data structures.^ The techniques examined for subset selection do not generally result in improved predictions relative to the full model. Approaches using 'forward selection' result in slightly smaller prediction errors and less biased estimators of predictive accuracy than 'all possible subsets' approaches but no differences are detected between the performances of C$\sb{\rm p}$ and S$\sb{\rm p}$. In every case, prediction errors of models obtained by subset selection in either of the half splits exceed those obtained using all predictors and the entire sample.^ Only the random split estimator is conditionally (on $\\beta$) unbiased, however MSEP$\sb{\rm m}$ is unbiased on average and PRESS is nearly so in unselected (fixed form) models. When subset selection techniques are used, MSEP$\sb{\rm m}$ and PRESS always underestimate prediction errors, by as much as 27 percent (on average) in small samples. Despite their bias, the mean squared errors (MSE) of these estimators are at least 30 percent less than that of the unbiased random split estimator. The DUPLEX split estimator suffers from large MSE as well as bias, and seems of little value within the context of stochastic regressor variables.^ To maximize predictive accuracy while retaining a reliable estimate of that accuracy, it is recommended that the entire sample be used for model development, and a leave-one-out statistic (e.g. PRESS) be used for assessment. ^
Resumo:
Trauma and severe head injuries are important issues because they are prevalent, because they occur predominantly in the young, and because variations in clinical management may matter. Trauma is the leading cause of death for those under age 40. The focus of this head injury study is to determine if variations in time from the scene of accident to a trauma center hospital makes a difference in patient outcomes.^ A trauma registry is maintained in the Houston-Galveston area and includes all patients admitted to any one of three trauma center hospitals with mild or severe head injuries. A study cohort, derived from the Registry, includes 254 severe head injury cases, for 1980, with a Glasgow Coma Score of 8 or less.^ Multiple influences relate to patient outcomes from severe head injury. Two primary variables and four confounding variables are identified, including time to emergency room, time to intubation, patient age, severity of injury, type of injury and mode of transport to the emergency room. Regression analysis, analysis of variance, and chi-square analysis were the principal statistical methods utilized.^ Analysis indicates that within an urban setting, with a four-hour time span, variations in time to emergency room do not provide any strong influence or predictive value to patient outcome. However, data are suggestive that at longer time periods there is a negative influence on outcomes. Age is influential only when the older group (55-64) is included. Mode of transport (helicopter or ambulance) did not indicate any significant difference in outcome.^ In a multivariate regression model, outcomes are influenced primarily by severity of injury and age which explain 36% (R('2)) of variance. Inclusion of time to emergency room, time to intubation, transport mode and type injury add only 4% (R('2)) additional contribution to explaining variation in patient outcome.^ The research concludes that since the group most at risk to head trauma is the young adult male involved in automobile/motorcycle accidents, more may be gained by modifying driving habits and other preventive measures. Continuous clinical and evaluative research are required to provide updated clinical wisdom in patient management and trauma treatment protocols. A National Institute of Trauma may be required to develop a national public policy and evaluate the many medical, behavioral and social changes required to cope with the country's number 3 killer and the primary killer of young adults.^
Resumo:
Traditional comparison of standardized mortality ratios (SMRs) can be misleading if the age-specific mortality ratios are not homogeneous. For this reason, a regression model has been developed which incorporates the mortality ratio as a function of age. This model is then applied to mortality data from an occupational cohort study. The nature of the occupational data necessitates the investigation of mortality ratios which increase with age. These occupational data are used primarily to illustrate and develop the statistical methodology.^ The age-specific mortality ratio (MR) for the covariates of interest can be written as MR(,ij...m) = ((mu)(,ij...m)/(theta)(,ij...m)) = r(.)exp (Z('')(,ij...m)(beta)) where (mu)(,ij...m) and (theta)(,ij...m) denote the force of mortality in the study and chosen standard populations in the ij...m('th) stratum, respectively, r is the intercept, Z(,ij...m) is the vector of covariables associated with the i('th) age interval, and (beta) is a vector of regression coefficients associated with these covariables. A Newton-Raphson iterative procedure has been used for determining the maximum likelihood estimates of the regression coefficients.^ This model provides a statistical method for a logical and easily interpretable explanation of an occupational cohort mortality experience. Since it gives a reasonable fit to the mortality data, it can also be concluded that the model is fairly realistic. The traditional statistical method for the analysis of occupational cohort mortality data is to present a summary index such as the SMR under the assumption of constant (homogeneous) age-specific mortality ratios. Since the mortality ratios for occupational groups usually increase with age, the homogeneity assumption of the age-specific mortality ratios is often untenable. The traditional method of comparing SMRs under the homogeneity assumption is a special case of this model, without age as a covariate.^ This model also provides a statistical technique to evaluate the relative risk between two SMRs or a dose-response relationship among several SMRs. The model presented has application in the medical, demographic and epidemiologic areas. The methods developed in this thesis are suitable for future analyses of mortality or morbidity data when the age-specific mortality/morbidity experience is a function of age or when there is an interaction effect between confounding variables needs to be evaluated. ^
Resumo:
Early and accurate detection of TB disease in HIV-infected individuals is a critical step for a successful TB program. In Vietnam, the diagnosis of TB disease, which is based predominantly on the clinical examination, chest radiography (CXR) and acid fast bacilli (AFB) sputum smear, has shown to be of low sensitivity in immunocompromised patients. The sputum culture is not routinely performed for patients with AFB negative smears, even in HIV-infected individuals.^ In that background, we conducted this cross-sectional study to estimate the prevalence of sputum culture-confirmed pulmonary tuberculosis (PTB), smear-negative PTB, and multidrug-resistant TB (MDR-TB) in the HIV-infected population in Ho Chi Minh City (HCMC), the largest city in Vietnam where both TB and HIV are highly prevalent. We also evaluated the diagnostic performance of various algorithms based on routine available tools in Vietnam such as symptoms screening, CXR, and AFB smear. Nearly 400 subjects were consecutively recruited from HIV-infected patients seeking care at the An Hoa Clinic in District 6 of Ho Chi Minh City from August 2009 through June 2010. Participants’ demographic data, clinical status, CXR, and laboratory results were collected. A multiple logistic regression model was developed to assess the association of covariates and PTB. ^ The prevalence of smear-positive TB, smear-negative TB, resistant TB, and MDR-TB were 7%, 2%, 5%, 2.5%, and 0.3%, respectively. Adjusted odds ratios for low CD4+ cell count, positive sputum smear, and CXR to positive sputum culture were 3.17, 32.04, and 4.28, respectively. Clinical findings alone had poor sensitivity, but the combination of CD4+ cell count, sputum smear, and CXR proved to perform a more accurate diagnosis.^ This study results support the routine use of sputum culture to improve the detection of TB disease in HIV-infected individuals in Vietnam. When routine sputum culture is not available, an algorithm combining CD4+ cell count, sputum smear, and CXR is recommended for diagnosing PTB. Future studies on more affordable, rapid, and accurate tests for TB infection would also be necessary to timely provide specific treatments for patients in need, reduce mortality, and minimize TB transmission to the general population.^
Resumo:
In regression analysis, covariate measurement error occurs in many applications. The error-prone covariates are often referred to as latent variables. In this proposed study, we extended the study of Chan et al. (2008) on recovering latent slope in a simple regression model to that in a multiple regression model. We presented an approach that applied the Monte Carlo method in the Bayesian framework to the parametric regression model with the measurement error in an explanatory variable. The proposed estimator applied the conditional expectation of latent slope given the observed outcome and surrogate variables in the multiple regression models. A simulation study was presented showing that the method produces estimator that is efficient in the multiple regression model, especially when the measurement error variance of surrogate variable is large.^
Resumo:
The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is an obvious carcinogen for lung cancer. Since CBMN (Cytokinesis-blocked micronucleus) has been found to be extremely sensitive to NNK-induced genetic damage, it is a potential important factor to predict the lung cancer risk. However, the association between lung cancer and NNK-induced genetic damage measured by CBMN assay has not been rigorously examined. ^ This research develops a methodology to model the chromosomal changes under NNK-induced genetic damage in a logistic regression framework in order to predict the occurrence of lung cancer. Since these chromosomal changes were usually not observed very long due to laboratory cost and time, a resampling technique was applied to generate the Markov chain of the normal and the damaged cell for each individual. A joint likelihood between the resampled Markov chains and the logistic regression model including transition probabilities of this chain as covariates was established. The Maximum likelihood estimation was applied to carry on the statistical test for comparison. The ability of this approach to increase discriminating power to predict lung cancer was compared to a baseline "non-genetic" model. ^ Our method offered an option to understand the association between the dynamic cell information and lung cancer. Our study indicated the extent of DNA damage/non-damage using the CBMN assay provides critical information that impacts public health studies of lung cancer risk. This novel statistical method could simultaneously estimate the process of DNA damage/non-damage and its relationship with lung cancer for each individual.^
Resumo:
It is well known that an identification problem exists in the analysis of age-period-cohort data because of the relationship among the three factors (date of birth + age at death = date of death). There are numerous suggestions about how to analyze the data. No one solution has been satisfactory. The purpose of this study is to provide another analytic method by extending the Cox's lifetable regression model with time-dependent covariates. The new approach contains the following features: (1) It is based on the conditional maximum likelihood procedure using a proportional hazard function described by Cox (1972), treating the age factor as the underlying hazard to estimate the parameters for the cohort and period factors. (2) The model is flexible so that both the cohort and period factors can be treated as dummy or continuous variables, and the parameter estimations can be obtained for numerous combinations of variables as in a regression analysis. (3) The model is applicable even when the time period is unequally spaced.^ Two specific models are considered to illustrate the new approach and applied to the U.S. prostate cancer data. We find that there are significant differences between all cohorts and there is a significant period effect for both whites and nonwhites. The underlying hazard increases exponentially with age indicating that old people have much higher risk than young people. A log transformation of relative risk shows that the prostate cancer risk declined in recent cohorts for both models. However, prostate cancer risk declined 5 cohorts (25 years) earlier for whites than for nonwhites under the period factor model (0 0 0 1 1 1 1). These latter results are similar to the previous study by Holford (1983).^ The new approach offers a general method to analyze the age-period-cohort data without using any arbitrary constraint in the model. ^