35 resultados para Mutations in proteins


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hyper IgE syndrome (HIES) is a multisystem disorder resulting in bone and immune system abnormalities. It is associated with mutations in STAT3, which disrupt protein domains responsible for transcriptional function. Patients with HIES display osteoporosis and enhanced inflammatory cytokine production similar to hematopoietic Stat3-deficient mice. Since osteoclast and inflammatory cytokine genes are NFκB targets, these observations indicate a possible deregulation of NFκB signaling in both mice and humans with STAT3-deficiency. Here, we sought to examine the role of STAT3 in the regulation of NFκB-mediated gene expression through analysis of three HIES STAT3 point mutations in both hematopoietic and non- hematopoietic cells. We found that IL-6-induced tyrosine phosphorylation of STAT3 was partially or completely abrogated by HIES mutations in the transactivation domain (V713L) or SH2 domain (V637M), respectively, in both hematopoietic and non- hematopoietic cells. By contrast, IL-6-induced tyrosine phosphorylation of an HIES mutant in the STAT3 DNA-binding domain (R382W) was intact. The R382W and V713L mutants significantly reduced IL-6-dependent STAT3 transcriptional activity in reporter gene assays. Moreover, the R382W and V637M mutants significantly diminished IL-6-responsive expression of the endogenous STAT3 target gene, Socs3, as assessed by quantitative real-time PCR (qPCR) in the RAW macrophage cell line. These observations indicate the HIES mutants dominantly suppress the transcriptional activity of wild type STAT3, albeit to varying degrees. All three HIES mutants enhanced LPS-induced expression of the NFκB target genes IL6 (IL-6), Cxcl10 (IP- 10), and Tnf (TNFα) in RAW cells, as indicated by qPCR. Furthermore, overexpression of wild type STAT3 in Stat3-deficient murine embryonic fibroblasts significantlyreduced LPS-stimulated expression of IL6, Cxcl10, and IL12p35. In addition, in aprimary murine osteoclast differentiation assay, a STAT3-specific SH2 domain inhibitor led to significantly increased levels of osteoclast-specific gene expression. These results suggest that STAT3 serves as a negative regulator of NFκB-mediated gene expression, and furthermore imply that STAT3 mutations associated with HIES contribute to the osteopenia and inflammation observed in HIES patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Colorectal cancer is a complex disease that is thought to arise when cells accumulate mutations that allow for uncontrolled growth. There are several recognized mechanisms for generating such mutations in sporadic colon cancer; one of which is chromosomal instability (CIN). One hypothesized driver of CIN in cancer is the improper repair of dysfunctional telomeres. Telomeres comprise the linear ends of chromosomes and play a dual role in cancer. Its length is maintained by the ribonucleoprotein, telomerase, which is not a normally expressed in somatic cells and as cells divide, telomeres continuously shorten. Critically shortened telomeres are considered dysfunctional as they are recognized as sites of DNA damage and cells respond by entering into replicative senescence or apoptosis, a process that is p53-dependent and the mechanism for telomere-induced tumor suppression. Loss of this checkpoint and improper repair of dysfunctional telomeres can initiate a cycle of fusion, bridge and breakage that can lead to chromosomal changes and genomic instability, a process that can lead to transformation of normal cells to cancer cells. Mouse models of telomere dysfunction are currently based on knocking out the telomerase protein or RNA component; however, the naturally long telomeres of mice require multiple generational crosses of telomerase null mice to achieve critically short telomeres. Shelterin is a complex of six core proteins that bind to telomeres specifically. Pot1a is a highly conserved member of this complex that specifically binds to the telomeric single-stranded 3’ G-rich overhang. Previous work in our lab has shown that Pot1a is essential for chromosomal end protection as deletion of Pot1a in murine embryonic fibroblasts (MEFs) leads to open telomere ends that initiate a DNA damage response mediated by ATR, resulting in p53-dependent cellular senescence. Loss of Pot1a in the background of p53 deficiency results in increased aberrant homologous recombination at telomeres and elevated genomic instability, which allows Pot1a-/-, p53-/- MEFs to form tumors when injected into SCID mice. These phenotypes are similar to those seen in cells with critically shortened telomeres. In this work, we created a mouse model of telomere ysfunction in the gastrointestinal tract through the conditional deletion of Pot1a that recapitulates the microscopic features seen in severe telomere attrition. Combined intestinal loss of Pot1a and p53 lead to formation of invasive adenocarcinomas in the small and large intestines. The tumors formed with long latency, low multiplicity and had complex genomes due to chromosomal instability, features similar to those seen in sporadic human colorectal cancers. Taken together, we have developed a novel mouse model of intestinal tumorigenesis based on genomic instability driven by telomere dysfunction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sensory rhodopsin I (SRI) in Halobacterium salinarum acts as a receptor for single-quantum attractant and two-quantum repellent phototaxis, transmitting light stimuli via its bound transducer HtrI. Signal-inverting mutations in the SRI-HtrI complex reverse the single-quantum response from attractant to repellent. Fast intramolecular charge movements reported here reveal that the unphotolyzed SRI-HtrI complex exists in two conformational states, which differ by their connection of the retinylidene Schiff base in the SRI photoactive site to inner or outer half-channels. In single-quantum photochemical reactions, the conformer with the Schiff base connected to the cytoplasmic (CP) half-channel generates an attractant signal, whereas the conformer with the Schiff base connected to the extracellular (EC) half-channel generates a repellent signal. In the wild-type complex the conformer equilibrium is poised strongly in favor of that with CP-accessible Schiff base. Signal-inverting mutations shift the equilibrium in favor of the EC-accessible Schiff base form, and suppressor mutations shift the equilibrium back toward the CP-accessible Schiff base form, restoring the wild-type phenotype. Our data show that the sign of the behavioral response directly correlates with the state of the connectivity switch, not with the direction of proton movements or changes in acceptor pK(a). These findings identify a shared fundamental process in the mechanisms of transport and signaling by the rhodopsin family. Furthermore, the effects of mutations in the HtrI subunit of the complex on SRI Schiff base connectivity indicate that the two proteins are tightly coupled to form a single unit that undergoes a concerted conformational transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tuberous sclerosis complex (TSC) is a genetic disorder with pleiotropic manifestations caused by heterozygous mutations in either TSC1 or TSC2. One of the less investigated complications of TSC is the formation of aneurysms of the descending aorta, which are characterized on pathologic examination by smooth muscle cell (SMC) proliferation in the aortic media. SMCs were explanted from Tsc2(+/-) mice to investigate the pathogenesis of aortic aneurysms caused by TSC2 mutations. Tsc2(+/-) SMCs demonstrated increased phosphorylation of mammalian target of rapamycin (mTOR), S6 and p70S6K and increased proliferation rates compared with wild-type (WT) SMCs. Tsc2(+/-) SMCs also had reduced expression of SMC contractile proteins compared with WT SMCs. An inhibitor of mTOR signaling, rapamycin, decreased SMC proliferation and increased contractile protein expression in the Tsc2(+/-) SMCs to levels similar to WT SMCs. Exposure to alpha-elastin fragments also decreased proliferation of Tsc2(+/-) SMCs and increased levels of p27(kip1), but failed to increase expression of contractile proteins. In response to artery injury using a carotid artery ligation model, Tsc2(+/-) mice significantly increased neointima formation compared with the control mice, and the neointima formation was inhibited by treatment with rapamycin. These results demonstrate that Tsc2 haploinsufficiency in SMCs increases proliferation and decreases contractile protein expression and suggest that the increased proliferative potential of the mutant cells may be suppressed in vivo by interaction with elastin. These findings provide insights into the molecular pathogenesis of aortic disease in TSC patients and identify a potential therapeutic target for treatment of this complication of the disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human cancer develops as a result of accumulation of mutations in oncogenes and tumor suppressor genes. Zinc finger protein 668 (ZNF668) has recently been identified and validated as one of the highly mutated genes in breast cancer, but its function is entirely unknown. Here, we report two major functions of ZNF668 in cancer development. (1) ZNF668 functions as a tumor suppressor by regulating p53 protein stability and function. We demonstrate that ZNF668 is a nucleolar protein that physically interacts with both MDM2 and p53. By binding to MDM2, ZNF668 regulates MDM2 autoubiquitination and prevents MDM2-mediated p53 ubiquitination and degradation; ZNF668 deficiency impairs DNA damage-induced p53 stabilization. Notably, ZNF668 effectively suppresses breast cancer cell proliferation and transformation in vitro and tumorigenicity in vivo. Consistently, ZNF668 knockdown readily transforms normal mammary epithelial cells. Together, our studies identify ZNF668 as a novel breast tumor suppressor gene that acts at least in part by regulating the stability and function of p53. (2) ZNF668 functions as a DNA repair protein by regulating histone acetylation. DNA repair proteins need to access the chromatin by chromatin modification or remodeling to use DNA template within chromatin. Dynamic posttranslational modifications of histones are critical for cells to relax chromatin in DNA repair. However, the precise underlying mechanism mediating enzymes responsible for these modifications and their recruitment to DNA lesions remains poorly understood. We observed ZNF668 depletion causes impaired chromatin relaxation as a result of impaired DNA-damage induced histone H2AX hyper-acetylation. This results in the decreased recruitment of repair proteins to DNA lesions, defective homologous recombination (HR) repair and impaired cell survival after DNA damage, albeit with the presence of a functional ATM/ATR dependent DNA-damage signaling cascade. Importantly, the impaired loading of repair proteins and the defect in DNA repair in ZNF668-deficient cells can be counteracted by chromatin relaxation, indicating that the DNA-repair defect that was observed in the absence of ZNF668 is due to impeded chromatin accessibility at sites of DNA breaks. Our findings therefore identify ZNF668 as a key molecule that links chromatin relaxation with response to DNA damage in the control of DNA repair.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tup1 forms a complex with Ssn6 in yeast. Ssn6-Tup1 complex is recruited via direct interactions with specific DNA binding proteins to a specific promoter region and mediates repression of several sets of genes including a-cell specific genes (asg) in $\alpha$ cells. It has been shown that repression of asgs also requires histone H4 and that Tup1 can directly interact with H3 and H4 in vitro. To address whether histone H3 is required for the repression of asgs, I have examined the effect of H3 and H4 mutations on the expression of a $\alpha$2-controlled LacZ reporter. Assay of $\beta$-glactosidase shows that mutations in either H3 or H4 cause a weak derepression of the reporter gene. Some double mutations result in a stronger derepression, while others do not. The H3 N-terminal deletion also leads to a slightly decreased expression of the reporter gene in $\alpha$ cells. Our data suggest that the N-termini of both H3 and H4 are cooperatively involved in the repression of a-cell specific genes in $\alpha$ cells, possibly through their interaction with Tup1.^ GCN5 was originally identified as a transcriptional regulator required to activate a subset of genes in yeast. Recently, it has been shown that GCN5 encodes the catalytic subunit of a nuclear histone acetyltransferase, providing the first direct link between histone acetylation and gene transcription. Recombinant Gcn5p (rGcn5p) exhibits a limited substrate specificity in vitro. However, neither the specificity of this enzyme in vivo nor the importance of particular acetylated residues to transcription or cell growth are well defined. In order to define the sites of histone acetylation mediated by Gcn5p in vivo and assess the significance of histone acetylation, more than 30 yeast strains have been constructed to bear specific H3 and/or H4 mutations in the presence or absence of GCN5 function. Our genetic data suggest that Gcn5p may have additional targets in vivo that are not identified as the targets of rGcn5p by previous studies. Western analysis using antibodies specifically recognizing particular acetylated isoforms of H3 and H4 led us to conclude that Gcn5p is necessary for full acetylation of multiple sites in both H3 and H4 in vivo. Consistent with these observations, rGcn5p still acetylates histones H3 and H4 bearing mutations either in H3 K14 or H4 K8,16, sites previously identified as the targets of acetylation by rGcn5p in H3 and H4. Our data also demonstrated that Gcn5p-mediated acetylation events are important for normal progression of the cell cycle and for transcriptional activation. Furthermore, a critical overall level of acetylation is essential for cell viability. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytochromes P450 are a superfamily of heme-thiolate proteins that function in a concert with another protein, cytochrome P450 reductase, as terminal oxidases of an enzymatic system catalyzing the metabolism of a variety of foreign compounds and endogenous substrates. In order to better understand P450s catalytic mechanism and substrate specificity, information about the structure of the active site is necessary. Given the lack of a crystal structure of mammalian P450, other methods have been used to elucidate the substrate recognition and binding site structure in the active center. In this project I utilized the photoaffinity labeling technique and site-directed mutagenesis approach to gain further structural insight into the active site of mammalian cytochrome P4501AI and examine the role of surface residues in the interaction of P4501A1 with the reductase. ^ Four crosslinked peptides were identified by photoaffinity labeling using diazido benzphetamine as a substrate analog. Alignment of the primary structure of cytochrome P4501A1 with that of bacterial cytochrome P450102 (the crystal structure of which is known) revealed that two of the isolated crosslinked peptides can be placed in the vicinity of heme (in the L helix region and β10-β11 sheet region of cytochrome P450102) and could be involved in substrate binding. The other two peptides were located on the surface of the protein with the label bound specifically to Lys residues that were proposed to be involved in reductase-P450 interaction. ^ Alternatively, it has been shown that some of the organic hydroperoxides can support P450 catalyzed reactions in the absence of NADPH, O2 and reductase. By means of photoaffinity labeling the cumene hydroperoxide binding region was identified. Using azidocumene as the photoaffinity label, the tripeptide T501-L502-K503 was shown to be the site where azidocumene covalently binds to P4501A1. The sequence alignment of cytochrome P4501A1 with cytochrome P450102 predicts that this region might correspond to β-sheet structure localized on the distal side of the heme ring near the I helix and the oxygen binding pocket. The role of Thr501 in the cumene hydroperoxide binding was confirmed by mutations of this residue and kinetic analysis of the effects of the mutations. ^ In addition, the role of two lysine residues, Lys271 and Lys279, in the interaction with reductase was examined by means of site-directed mutagenesis. The lysine residues were substituted with isoleucine and enzymatic activity of the wild type and the mutants were compared in reductase- and cumene hydroperoxide-supported systems. The lysine 279 residue has been shown to play a critical role in the P4501A1-reductase interaction. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ribosome is a molecular machine that produces proteins in a cell. It consists of RNAs (rRNAs) and proteins. The rRNAs have been implicated in various aspects of protein biosynthesis supporting the idea that they function directly in translation. In this study the direct involvement of rRNA in translation termination was hypothesized and both genetic and biochemical strategies were designed to test this hypothesis. As a result, several regions of rRNAs from both ribosomal subunits were implicated in termination. More specifically, the mutation G1093A in an RNA of the large subunit (23S rRNA) and the mutation C1054A in the small subunit RNA (16S rRNA) of the Escherichia coli ribosome, were shown to affect the binding of the proteins that drive termination, RF1 and RF2. These mutations also caused defects in catalysis of peptidyl-tRNA hydrolysis, the last step of termination. Furthermore, the mutations affected the function of RF2 to a greater extent than that of RF1, a striking result considering the similarity of the RFs. The major defect in RF2 function was consistent with in vivo characteristics of the mutants and can be explained by the inability of the mutant rRNA sites to activate the hydrolytic center, that is the catalytic site for peptidyl-tRNA hydrolysis. Consistent with this explanation is the possibility of a direct interaction between the G1093-region (domain II of 23S rRNA) and the hydrolytic center (most likely domains IV–VI of 23S rRNA). To test that interaction hypothesis selections were performed for mutations in domains IV–VI that compensated for the growth defects caused by G1093A. Several compensatory mutations were isolated which not only restored growth in the presence of G1093A but also appeared to compensate for the termination defects caused by the G1093A. Therefore these results provided genetic evidence for an intramolecular interaction that might lead to peptidyl-tRNA hydrolysis. Finally, a new approach to the study of rRNA involvement in termination was designed. By screening a library of rRNA fragments, a fragment of the 23S rRNA (nt 74-136) was identified that caused readthrough of UGA. The antisense RNA fragment produced a similar effect. The data implicated the corresponding segment of intact 23S rRNA in termination. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transcriptional regulation is fundamental for the precise development of all organisms. Through tight regulation, necessary genes are activated at proper spatial and temporal patterns, while unnecessary genes are repressed. A large family of regulator proteins that have been demonstrated to be involved in various developmental processes by activation and repression of target genes is the homeodomain family of proteins. To date, the function of many of these homeoproteins has been elucidated in diverse species. However, the molecular mechanism underlying the function of these proteins has not been fully understood. In this study, the molecular mechanism of the function of a LIM-homeoprotein, Lim1, was examined. In addition to the homeodomain, Lim1 contains two LIM domains that are highly conserved among species. This high conservation along with data from in vitro studies on Xenopus Lim1 suggests that the LIM domains might be important for the function of Lim1 as a transcriptional regulator. Here, the functional importance of the LIM domains of Lim1 was determined by using a novel gene-targeting strategy in mouse embryonic stem (ES) cells. A cre-loxP system was used in conjunction with the unique genomic organization of Lim1 to obtain four types of mutant ES cell lines that would allow for the in vivo analysis of the function of both the LIM domains of Lim1 together and also singularly. These four mutant Lim1 alleles either contained base-pair changes at the LIM encoding exons that alters zinc-binding amino acids of the LIM domains or contained only exogenous loxP sequences in the first intron of Lim1, which serves as the control allele. These mutations in the LIM domains would presumably abolish the zinc-finger tertiary structure of the domain and thus render the domain non-functional. Mice carrying mutations at both the LIM domains of Lim1, L1L2, die around E10 without anterior head structures anterior to rhombomere 3, identical in phenotype to the Lim1 null mutants in spite of the presence of mutant Lim1 RNA. This result demonstrates that the integrity of both the LIM domains are essential for the function of Lim1. This is further supported by the phenotype of mice carrying mutation at only the second LIM domain of Lim1, L2. The L2 mice although still carrying one intact Lim1 LIM domain, also die in utero. The L2 mice die at varying times, from around E8 to E10 with anterior defects in addition to other axial defects which have yet to be fully characterized. The results of this study so far demonstrates that the integrity of both LIM domains are required for the function of Lim1. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gene silencing due to promoter methylation is an alternative to mutations and deletions, which inactivate tumor suppressor genes (TSG) in cancer. We identified RIL by Methylated CpG Island Amplification technique as a novel aberrantly methylated gene. RIL is expressed in normal tissues and maps to the 5q31 region, frequently deleted in leukemias. We found methylation of RIL in 55/80 (69%) cancer cell lines, with highest methylation in leukemia and colon. We also observed methylation in 46/80 (58%) primary tumors, whereas normal tissues showed substantially lower degrees of methylation. RIL expression was lost in 13/16 cancer cell lines and was restored by demethylating agent. Screening of 38 cell lines and 13 primary cancers by SSCP revealed no mutations in RIL, suggesting that methylation and LOH are the primary inactivation mechanisms. Stable transfection of RIL into colorectal cancer cells resulted in reduction in cell growth, clonogenicity, and increased apoptosis upon UVC treatment, suggesting that RIL is a good candidate TSG. ^ In searching for a cause of RIL hypermethylation, we identified a 12-bp polymorphic sequence around the transcription start site of the gene that creates a long allele containing 3CTC repeat. Evolutionary studies suggested that the long allele appeared late in evolution due to insertion. Using bisulfite sequencing, in cancers heterozygous for RIL, we found that the short allele is 4.4-fold more methylated than the long allele (P = 0.003). EMSA results suggested binding of factor(s) to the inserted region of the long allele, but not to the short. EMSA mutagenesis and competition studies, as well as supershifts using nuclear extracts or recombinant Sp1 strongly indicated that those DNA binding proteins are Sp1 and Sp3. Transient transfections of RIL allele-specific expression constructs showed less than 2-fold differences in luciferase activity, suggesting no major effects of the additional Sp1 site on transcription. However, stable transfection resulted in 3-fold lower levels of transcription from the short allele 60 days post-transfection, consistent with the concept that the polymorphic Sp1 site protects against time-dependent silencing. Thus, an insertional polymorphism in the RIL promoter creates an additional Sp1/Sp3 site, which appears to protect it from silencing and methylation in cancer. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Translation termination as a result of premature nonsense codon-incorporation in a RNA transcript can lead to the production of aberrant proteins with gain-of-function or dominant negative properties that could have deletrious effects on the cell. T-cell Receptor (TCR) genes acquire premature termination codons two-thirds of the time as a result of the error-prone programmed rearrangement events that normally occur during T-cell development. My studies have focused on the fate of TCR precursor mRNAs in response to in-frame nonsense mutations. ^ Previous published studies from our laboratory have shown that TCR precursor mRNAs are subject to nonsense mediated upregulation of pre-mRNA (NMUP). In this dissertation, I performed substitution and deletion analysis to characterize specific regions of TCR which are required to elicit NMUP. I performed frame- and factor-dependence studies to determine its relationship with other nonsense codon induced responses using several approaches including (i) translation dependence studies (ii) deletion and mutational analysis, as well as (iii) siRNA mediated knockdown of proteins involved. I also addressed the underlying molecular mechanism for this pre-mRNA upregulation by (i) RNA half-life studies using a c-fos inducible promoter, and (ii) a variety of assays to determine pre-mRNA splicing efficiency. ^ Using these approaches, I have identified a region of TCR that is both necessary and sufficient to elicit (NMUP). I have also found that neither cytoplasmic translation machinery nor the protein UPF1 are involved in eliciting this nuclear event. I have shown that the NMUP can be induced not only by nonsense and frameshift mutations, but also missense mutations that disrupt a cis splicing element in the exon that contains the mutation. However, the effect of nonsense mutations on pre-mRNA is unique and distinguishable from that of missense mutations in that nonsense mutations can upregulate pre-mRNA in a frame-dependent manner. Lastly, I provide evidence that NMUP occurs by a mechanism in which nonsense mutations inhibit the splicing of introns. In summary, I have found that TCR precursor mRNAs are subject to multiple forces involving both RNA splicing and translation that can either increase or decrease the levels of these precursor mRNAs. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adenylyl cyclase (AC) converts ATP into cAMP, which activates protein kinase A (PKA). Activation of PKA leads to the phosphorylation of specific substrates. The mechanism of specificity of PKA phosphorylation baffled researchers for many years. The discovery of A Kinase Anchoring Proteins (AKAPs) has helped to unravel this mystery. AKAPs function to target PKA to specific regions within the cell. They also anchor other enzymes, receptors, or channels leading to tightly regulated signaling modules. Several studies have suggested an important role for activated PKA in these complexes, including the AKAPs yotiao and muscle AKAP (mAKAP). Yotiao, a plasma membrane AKAP, anchors PP1, NMDA receptors, IP3 receptors, and heart potassium channel subunit KCNQI. PKA phosphorylation of NMDA receptors as well as KCNQI leads to increased channel activity. Patients with mutations in KCNQI or yotiao that cause loss of targeting of KCNQI develop long QT syndrome, which can be fatal. mAKAP anchors several CAMP/PKA-regulated pathways to the nuclear envelope in cardiac myocytes. The necessity of activated PKA in these complexes led to the hypothesis that AC is also anchored. The results indicate that AC does associate with yotiao in brain and heart, specifically with AC types I-III, and IX. Co-expression of AC II or III with yotiao leads to inhibition of each isoform's activity. Binding assays revealed that yotiao binds to the N-terminus of AC II and that this region can reverse the inhibition of AC II, but not AC III, indicating unique binding sites on yotiao. AC II binds directly to as 808-957 of yotiao. Y808-957 acts as a dominant negative as the addition of it to rat brain membranes results in a ∼40% increase in AC activity. Additionally, AC was also found to associate with mAKAP in heart, specifically with AC types II and V. The binding site of AC was mapped to 275-340 of mAKAP, while mAKAP binds to the soluble domains of AC V as a complex. These results indicate that interactions between AC and AKAPs are specific and that AC plays an important role in AKAP-targeted signaling. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives. Previous studies have shown a survival advantage in ovarian cancer patients with Ashkenazi-Jewish (AJ) BRCA founder mutations, compared to sporadic ovarian cancer patients. The purpose of this study was to determine if this association exists in ovarian cancer patients with non-Ashkenazi Jewish BRCA mutations. In addition, we sought to account for possible "survival bias" by minimizing any lead time that may exist between diagnosis and genetic testing. ^ Methods. Patients with stage III/IV ovarian, fallopian tube, or primary peritoneal cancer and a non-Ashkenazi Jewish BRCA1 or 2 mutation, seen for genetic testing January 1996-July 2007, were identified from genetics and institutional databases. Medical records were reviewed for clinical factors, including response to initial chemotherapy. Patients with sporadic (non-hereditary) ovarian, fallopian tube, or primary peritoneal cancer, without family history of breast or ovarian cancer, were compared to similar cases, matched by age, stage, year of diagnosis, and vital status at time interval to BRCA testing. When possible, 2 sporadic patients were matched to each BRCA patient. An additional group of unmatched, sporadic ovarian, fallopian tube and primary peritoneal cancer patients was included for a separate analysis. Progression-free (PFS) & overall survival (OS) were calculated by the Kaplan-Meier method. Multivariate Cox proportional hazards models were calculated for variables of interest. Matched pairs were treated as clusters. Stratified log rank test was used to calculate survival data for matched pairs using paired event times. Fisher's exact test, chi-square, and univariate logistic regression were also used for analysis. ^ Results. Forty five advanced-stage ovarian, fallopian tube and primary peritoneal cancer patients with non-Ashkenazi Jewish (non-AJ) BRCA mutations, 86 sporadic-matched and 414 sporadic-unmatched patients were analyzed. Compared to the sporadic-matched and sporadic-unmatched ovarian cancer patients, non-AJ BRCA mutation carriers had longer PFS (17.9 & 13.8 mos. vs. 32.0 mos., HR 1.76 [95% CI 1.13–2.75] & 2.61 [95% CI 1.70–4.00]). In relation to the sporadic- unmatched patients, non-AJ BRCA patients had greater odds of complete response to initial chemotherapy (OR 2.25 [95% CI 1.17–5.41]) and improved OS (37.6 mos. vs. 101.4 mos., HR 2.64 [95% CI 1.49–4.67]). ^ Conclusions. This study demonstrates a significant survival advantage in advanced-stage ovarian cancer patients with non-AJ BRCA mutations, confirming the previous studies in the Jewish population. Our efforts to account for "survival bias," by matching, will continue with collaborative studies. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Candida albicans is the most important fungal pathogen of humans. Transcript profiling studies show that upon phagocytosis by macrophages, C. albicans undergoes a massive metabolic reorganization activating genes involved in alternative carbon metabolism, including the glyoxylate cycle, β-oxidation and gluconeogenesis. Mutations in key enzymes such as ICL1 (glyoxylate cycle) and FOX2 (fatty acid β-oxidation) revealed that alternative carbon metabolic pathways are required for full virulence in C. albicans. These studies indicate C. albicans uses non-preferred carbon sources allowing its adaptation to microenvironments were nutrients are scarce. It has become apparent that the regulatory networks required for regulation of alternative carbon metabolism in C. albicans are considerably different from the Saccharomyces cerevisiae paradigm and appear more analogous to the Aspergillus nidulans systems. Well-characterized transcription factors in S. cerevisiae have no apparent phenotype or are missing in C. albicans. CTF1 was found to be a single functional homolog of the A. nidulans FarA/FarB proteins, which are transcription factors required for fatty acid utilization. Both FOX2 and ICL1 were found to be part of a large CTF1 regulon. To increase our understanding of how CTF1 regulates its target genes, including whether regulation is direct or indirect, the FOX2 and ICL1 promoter regions were analyzed using a combination of bioinformatics and promoter deletion analysis. To begin characterizing the FOX2 and ICL1 promoters, 5’ rapid amplification of cDNA ends (5’RACE) was used to identify two transcriptional initiation sites in FOX2 and one in ICL1. GFP reporter assays show FOX2 and ICL1 are rapidly expressed in the presence of alternative carbon sources. Both FOX2 and ICL1 harbor the CCTCGG sequence known to be bound by the Far proteins, hence rendering the motif as a putative CTF1 DNA binding element. In this study, the CCTCGG sequence was found to be essential for FOX2 regulation. However, this motif does not appear to be equally important for the regulation of ICL1. This study supports the notion that although C. albicans has diverged from the paradigms of model fungi, C. albicans has made specific adaptations to its transcription-based regulatory network that may contribute to its metabolic flexibility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thoracic aortic aneurysms and dissections (TAAD) are the primary disease affecting the thoracic ascending aorta, with an incidence rate of 10.4/100,000. Although about 20% of patients carry a mutation in a single gene that causes their disease, the remaining 80% of patients may also have genetic factors that increase their risk for developing TAAD. Many of the genes that predispose to TAAD encode proteins involved in smooth muscle cell (SMC) contraction and the disease-causing mutations are predicted to disrupt contractile function. SMCs are the predominant cell type in the ascending aortic wall. Mutations in MYH11, encoding the smooth muscle specific myosin heavy chain, are a rare cause of inherited TAAD. However, rare but recurrent non-synonymous variants in MYH11 are present in the general population but do not cause inherited TAAD. The goal of this study was to assess the potential role of these rare variants in vascular diseases. Two distinct variants were selected: the most commonly seen rare variant, MYH11 R247C, and a duplication of the chromosomal region spanning the MYH11 locus at 16p13.1. Genetic analyses indicated that both of these variants were significantly enriched in patients with TAAD compared with controls. A knock-in mouse model of the Myh11 R247C rare variant was generated, and these mice survive and reproduce normally. They have no structural abnormalities of the aorta or signs of aortic disease, but do have decreased aortic contractility. Myh11R247C/R247C mice also have increased proliferative response to vascular injury in vivo and increased proliferation of SMCs in vitro. Myh11R247C/R247C SMCs have decreased contractile gene and protein expression and are dedifferentiated. In fibroblasts, myosin force generation is required for maturation of focal adhesions, and enhancers of RhoA activity replace enhancers of Rac1 activity as maturation occurs. Consistent with these previous findings, focal adhesions are smaller in Myh11R247C/R247C SMCs, and there is decreased RhoA activation. A RhoA activator (CN03) rescues the dedifferentiated phenotype of Myh11R247C/R247C SMCs. Myh11R247C/R247C mice were bred with an existing murine model of aneurysm formation, the Acta2-/- mouse. Over time, mice carrying the R247C allele in conjunction with heterozygous or homozygous loss of Acta2 had significantly increased aortic diameter, and a more rapid accumulation of pathologic markers. These results suggest that the Myh11 R247C rare variant acts as a modifier gene increasing the risk for and severity of TAAD in mice. In patients with 16p13.1 duplications, aortic MYH11 expression is increased, but there is no corresponding increase in smooth muscle myosin heavy chain protein. Using SMCs that overexpress Myh11, we identified alterations in SMC phenotype leading to excessive protein turnover. All contractile proteins, not just myosin, are affected, and the proteins are turned over by autophagic degradation. Surprisingly, these cells are also more contractile compared with wild-type SMCs. The results described in this dissertation firmly establish that rare variants in MYH11 significantly affect the phenotype of SMCs. Further, the data suggests that these rare variants do increase the risk of TAAD via pathways involving altered SMC phenotype and contraction. Therefore, this study validates that these rare genetic variants alter vascular SMCs and provides model systems to explore the contribution of rare variants to disease.