27 resultados para Multiple-trait model
Resumo:
Next-generation DNA sequencing platforms can effectively detect the entire spectrum of genomic variation and is emerging to be a major tool for systematic exploration of the universe of variants and interactions in the entire genome. However, the data produced by next-generation sequencing technologies will suffer from three basic problems: sequence errors, assembly errors, and missing data. Current statistical methods for genetic analysis are well suited for detecting the association of common variants, but are less suitable to rare variants. This raises great challenge for sequence-based genetic studies of complex diseases.^ This research dissertation utilized genome continuum model as a general principle, and stochastic calculus and functional data analysis as tools for developing novel and powerful statistical methods for next generation of association studies of both qualitative and quantitative traits in the context of sequencing data, which finally lead to shifting the paradigm of association analysis from the current locus-by-locus analysis to collectively analyzing genome regions.^ In this project, the functional principal component (FPC) methods coupled with high-dimensional data reduction techniques will be used to develop novel and powerful methods for testing the associations of the entire spectrum of genetic variation within a segment of genome or a gene regardless of whether the variants are common or rare.^ The classical quantitative genetics suffer from high type I error rates and low power for rare variants. To overcome these limitations for resequencing data, this project used functional linear models with scalar response to develop statistics for identifying quantitative trait loci (QTLs) for both common and rare variants. To illustrate their applications, the functional linear models were applied to five quantitative traits in Framingham heart studies. ^ This project proposed a novel concept of gene-gene co-association in which a gene or a genomic region is taken as a unit of association analysis and used stochastic calculus to develop a unified framework for testing the association of multiple genes or genomic regions for both common and rare alleles. The proposed methods were applied to gene-gene co-association analysis of psoriasis in two independent GWAS datasets which led to discovery of networks significantly associated with psoriasis.^
Resumo:
Interaction effect is an important scientific interest for many areas of research. Common approach for investigating the interaction effect of two continuous covariates on a response variable is through a cross-product term in multiple linear regression. In epidemiological studies, the two-way analysis of variance (ANOVA) type of method has also been utilized to examine the interaction effect by replacing the continuous covariates with their discretized levels. However, the implications of model assumptions of either approach have not been examined and the statistical validation has only focused on the general method, not specifically for the interaction effect.^ In this dissertation, we investigated the validity of both approaches based on the mathematical assumptions for non-skewed data. We showed that linear regression may not be an appropriate model when the interaction effect exists because it implies a highly skewed distribution for the response variable. We also showed that the normality and constant variance assumptions required by ANOVA are not satisfied in the model where the continuous covariates are replaced with their discretized levels. Therefore, naïve application of ANOVA method may lead to an incorrect conclusion. ^ Given the problems identified above, we proposed a novel method modifying from the traditional ANOVA approach to rigorously evaluate the interaction effect. The analytical expression of the interaction effect was derived based on the conditional distribution of the response variable given the discretized continuous covariates. A testing procedure that combines the p-values from each level of the discretized covariates was developed to test the overall significance of the interaction effect. According to the simulation study, the proposed method is more powerful then the least squares regression and the ANOVA method in detecting the interaction effect when data comes from a trivariate normal distribution. The proposed method was applied to a dataset from the National Institute of Neurological Disorders and Stroke (NINDS) tissue plasminogen activator (t-PA) stroke trial, and baseline age-by-weight interaction effect was found significant in predicting the change from baseline in NIHSS at Month-3 among patients received t-PA therapy.^
Resumo:
Systemic sclerosis (SSc) or Scleroderma is a complex disease and its etiopathogenesis remains unelucidated. Fibrosis in multiple organs is a key feature of SSc and studies have shown that transforming growth factor-β (TGF-β) pathway has a crucial role in fibrotic responses. For a complex disease such as SSc, expression quantitative trait loci (eQTL) analysis is a powerful tool for identifying genetic variations that affect expression of genes involved in this disease. In this study, a multilevel model is described to perform a multivariate eQTL for identifying genetic variation (SNPs) specifically associated with the expression of three members of TGF-β pathway, CTGF, SPARC and COL3A1. The uniqueness of this model is that all three genes were included in one model, rather than one gene being examined at a time. A protein might contribute to multiple pathways and this approach allows the identification of important genetic variations linked to multiple genes belonging to the same pathway. In this study, 29 SNPs were identified and 16 of them located in known genes. Exploring the roles of these genes in TGF-β regulation will help elucidate the etiology of SSc, which will in turn help to better manage this complex disease. ^
Resumo:
Periodontal diseases (PD) are infectious, inflammatory, and tissue destructive events which affect the periodontal ligament that surround and support the teeth. Periodontal diseases are the major cause of tooth loss after age 35, with gingivitis and periodontitis affecting 75% of the adult population. A select group of bacterial organisms are associated with periodontal pathogenesis. There is a direct association between oral hygiene and prevention of PD. The importance of genetic differences and host immune response capabilities in determining host, susceptibility or resistance to PD has not been established. This study examined the risk factors and serum (humoral) immune response to periodontal diseased-associated pathogens in a 55 to 80+ year old South Texas study sample with PD. This study sample was described by: age, sex, ethnicity, the socioeconomic factors marital status, income and occupation, IgG, IgA, IgM immunoglobulin status, and the autoimmune response markers rheumatoid factor (RF) and antinuclear antibody (ANA). These variables were used to determine the risk factors associated with development of PD. Serum IgG, IgA, IgM antibodies to bacterial antigens provided evidence for disease exposure.^ A causal model for PD was constructed from associations for risk factors (ethnicity, marital status, income, and occupation) with dental exam and periodontitis. The multiple correlation between PD and ethnicity, income and dental exam was significant. Hispanics of low income were least likely to have had a dental exam in the last year and most likely to have PD. The etiologic agents for PD, as evidenced by elevated humoral antibody responses, were the Gram negative microorganisms Bacteroides gingivalis, serotypes FDC381 and SUNYaBA7A1-28, and Wolinella recta. Recommendation for a PD prevention and control program are provided. ^
Resumo:
This study examines Hispanic levels of incorporation and access to health care. Applying the Aday and Andersen framework for the study of access, the study examined the relationship between two levels of Hispanic incorporation into U.S. society, i.e., mainstream versus ethnic, and potential and realized measures of access to health care. Data for the study were drawn from a 1992 telephone survey of 600 randomly selected Hispanics in Houston and Harris County.^ The hypotheses tested were: (1) Hispanics who are incorporated into mainstream society are more likely to have better potential and realized access to health care than those who are incorporated into ethnic-group enclaves regardless of their socioeconomic status (SES), health status and health needs, and (2) there is no interaction between the levels of incorporation (mainstream or ethnic) and SES, health status, and health needs in predicting potential and realized access.^ The data analysis supported Hypothesis One for the two measures of potential access. The results of bivariate and multiple logistic regression analyses indicated that for Hispanics in Houston and Harris County, being in the "mainstream" incorporation category increased their potential access to care, having "health insurance" and a "regular place of care". For the selected measure of realized access, having a "regular check-up", the analysis did not demonstrate statistically significant differences in having a regular check-up among Hispanics incorporated in the ethnic or mainstream incorporation categories.^ Hypothesis Two, that there is no interaction between the levels of incorporation and socioeconomic characteristics, health status, and health needs in predicting potential and realized access among Hispanics was supported by the data. The results of the logistic regression analysis showed that, after adjusting for socioeconomic status, health status, and health needs, the association between "level of incorporation" and the two measures of potential access ("health insurance" and having a "usual place of care") was not modified by the control variables nor by their interaction with level of incorporation. That is, the effect of incorporation on Hispanics' health insurance coverage, and having a usual place of care, was homogenous across Hispanics with different SES and health status.^ The main research implication of this dissertation is the employment of a theoretical framework for the assessment of cultural factors essential to research on migrating heterogeneous subpopulations. It also provided strategies to solve practical and methodological difficulties in the secondary analyses of data on these populations. ^
Resumo:
Objective: In this secondary data analysis, three statistical methodologies were implemented to handle cases with missing data in a motivational interviewing and feedback study. The aim was to evaluate the impact that these methodologies have on the data analysis. ^ Methods: We first evaluated whether the assumption of missing completely at random held for this study. We then proceeded to conduct a secondary data analysis using a mixed linear model to handle missing data with three methodologies (a) complete case analysis, (b) multiple imputation with explicit model containing outcome variables, time, and the interaction of time and treatment, and (c) multiple imputation with explicit model containing outcome variables, time, the interaction of time and treatment, and additional covariates (e.g., age, gender, smoke, years in school, marital status, housing, race/ethnicity, and if participants play on athletic team). Several comparisons were conducted including the following ones: 1) the motivation interviewing with feedback group (MIF) vs. the assessment only group (AO), the motivation interviewing group (MIO) vs. AO, and the intervention of the feedback only group (FBO) vs. AO, 2) MIF vs. FBO, and 3) MIF vs. MIO.^ Results: We first evaluated the patterns of missingness in this study, which indicated that about 13% of participants showed monotone missing patterns, and about 3.5% showed non-monotone missing patterns. Then we evaluated the assumption of missing completely at random by Little's missing completely at random (MCAR) test, in which the Chi-Square test statistic was 167.8 with 125 degrees of freedom, and its associated p-value was p=0.006, which indicated that the data could not be assumed to be missing completely at random. After that, we compared if the three different strategies reached the same results. For the comparison between MIF and AO as well as the comparison between MIF and FBO, only the multiple imputation with additional covariates by uncongenial and congenial models reached different results. For the comparison between MIF and MIO, all the methodologies for handling missing values obtained different results. ^ Discussions: The study indicated that, first, missingness was crucial in this study. Second, to understand the assumptions of the model was important since we could not identify if the data were missing at random or missing not at random. Therefore, future researches should focus on exploring more sensitivity analyses under missing not at random assumption.^
Resumo:
Background. The United Nations' Millennium Development Goal (MDG) 4 aims for a two-thirds reduction in death rates for children under the age of five by 2015. The greatest risk of death is in the first week of life, yet most of these deaths can be prevented by such simple interventions as improved hygiene, exclusive breastfeeding, and thermal care. The percentage of deaths in Nigeria that occur in the first month of life make up 28% of all deaths under five years, a statistic that has remained unchanged despite various child health policies. This paper will address the challenges of reducing the neonatal mortality rate in Nigeria by examining the literature regarding efficacy of home-based, newborn care interventions and policies that have been implemented successfully in India. ^ Methods. I compared similarities and differences between India and Nigeria using qualitative descriptions and available quantitative data of various health indicators. The analysis included identifying policy-related factors and community approaches contributing to India's newborn survival rates. Databases and reference lists of articles were searched for randomized controlled trials of community health worker interventions shown to reduce neonatal mortality rates. ^ Results. While it appears that Nigeria spends more money than India on health per capita ($136 vs. $132, respectively) and as percent GDP (5.8% vs. 4.2%, respectively), it still lags behind India in its neonatal, infant, and under five mortality rates (40 vs. 32 deaths/1000 live births, 88 vs. 48 deaths/1000 live births, 143 vs. 63 deaths/1000 live births, respectively). Both countries have comparably low numbers of healthcare providers. Unlike their counterparts in Nigeria, Indian community health workers receive training on how to deliver postnatal care in the home setting and are monetarily compensated. Gender-related power differences still play a role in the societal structure of both countries. A search of randomized controlled trials of home-based newborn care strategies yielded three relevant articles. Community health workers trained to educate mothers and provide a preventive package of interventions involving clean cord care, thermal care, breastfeeding promotion, and danger sign recognition during multiple postnatal visits in rural India, Bangladesh, and Pakistan reduced neonatal mortality rates by 54%, 34%, and 15–20%, respectively. ^ Conclusion. Access to advanced technology is not necessary to reduce neonatal mortality rates in resource-limited countries. To address the urgency of neonatal mortality, countries with weak health systems need to start at the community level and invest in cost-effective, evidence-based newborn care interventions that utilize available human resources. While more randomized controlled studies are urgently needed, the current available evidence of models of postnatal care provision demonstrates that home-based care and health education provided by community health workers can reduce neonatal mortality rates in the immediate future.^
Resumo:
This study proposed a novel statistical method that modeled the multiple outcomes and missing data process jointly using item response theory. This method follows the "intent-to-treat" principle in clinical trials and accounts for the correlation between outcomes and missing data process. This method may provide a good solution to chronic mental disorder study. ^ The simulation study demonstrated that if the true model is the proposed model with moderate or strong correlation, ignoring the within correlation may lead to overestimate of the treatment effect and result in more type I error than specified level. Even if the within correlation is small, the performance of proposed model is as good as naïve response model. Thus, the proposed model is robust for different correlation settings if the data is generated by the proposed model.^
Resumo:
My dissertation focuses on developing methods for gene-gene/environment interactions and imprinting effect detections for human complex diseases and quantitative traits. It includes three sections: (1) generalizing the Natural and Orthogonal interaction (NOIA) model for the coding technique originally developed for gene-gene (GxG) interaction and also to reduced models; (2) developing a novel statistical approach that allows for modeling gene-environment (GxE) interactions influencing disease risk, and (3) developing a statistical approach for modeling genetic variants displaying parent-of-origin effects (POEs), such as imprinting. In the past decade, genetic researchers have identified a large number of causal variants for human genetic diseases and traits by single-locus analysis, and interaction has now become a hot topic in the effort to search for the complex network between multiple genes or environmental exposures contributing to the outcome. Epistasis, also known as gene-gene interaction is the departure from additive genetic effects from several genes to a trait, which means that the same alleles of one gene could display different genetic effects under different genetic backgrounds. In this study, we propose to implement the NOIA model for association studies along with interaction for human complex traits and diseases. We compare the performance of the new statistical models we developed and the usual functional model by both simulation study and real data analysis. Both simulation and real data analysis revealed higher power of the NOIA GxG interaction model for detecting both main genetic effects and interaction effects. Through application on a melanoma dataset, we confirmed the previously identified significant regions for melanoma risk at 15q13.1, 16q24.3 and 9p21.3. We also identified potential interactions with these significant regions that contribute to melanoma risk. Based on the NOIA model, we developed a novel statistical approach that allows us to model effects from a genetic factor and binary environmental exposure that are jointly influencing disease risk. Both simulation and real data analyses revealed higher power of the NOIA model for detecting both main genetic effects and interaction effects for both quantitative and binary traits. We also found that estimates of the parameters from logistic regression for binary traits are no longer statistically uncorrelated under the alternative model when there is an association. Applying our novel approach to a lung cancer dataset, we confirmed four SNPs in 5p15 and 15q25 region to be significantly associated with lung cancer risk in Caucasians population: rs2736100, rs402710, rs16969968 and rs8034191. We also validated that rs16969968 and rs8034191 in 15q25 region are significantly interacting with smoking in Caucasian population. Our approach identified the potential interactions of SNP rs2256543 in 6p21 with smoking on contributing to lung cancer risk. Genetic imprinting is the most well-known cause for parent-of-origin effect (POE) whereby a gene is differentially expressed depending on the parental origin of the same alleles. Genetic imprinting affects several human disorders, including diabetes, breast cancer, alcoholism, and obesity. This phenomenon has been shown to be important for normal embryonic development in mammals. Traditional association approaches ignore this important genetic phenomenon. In this study, we propose a NOIA framework for a single locus association study that estimates both main allelic effects and POEs. We develop statistical (Stat-POE) and functional (Func-POE) models, and demonstrate conditions for orthogonality of the Stat-POE model. We conducted simulations for both quantitative and qualitative traits to evaluate the performance of the statistical and functional models with different levels of POEs. Our results showed that the newly proposed Stat-POE model, which ensures orthogonality of variance components if Hardy-Weinberg Equilibrium (HWE) or equal minor and major allele frequencies is satisfied, had greater power for detecting the main allelic additive effect than a Func-POE model, which codes according to allelic substitutions, for both quantitative and qualitative traits. The power for detecting the POE was the same for the Stat-POE and Func-POE models under HWE for quantitative traits.
Resumo:
Complex diseases such as cancer result from multiple genetic changes and environmental exposures. Due to the rapid development of genotyping and sequencing technologies, we are now able to more accurately assess causal effects of many genetic and environmental factors. Genome-wide association studies have been able to localize many causal genetic variants predisposing to certain diseases. However, these studies only explain a small portion of variations in the heritability of diseases. More advanced statistical models are urgently needed to identify and characterize some additional genetic and environmental factors and their interactions, which will enable us to better understand the causes of complex diseases. In the past decade, thanks to the increasing computational capabilities and novel statistical developments, Bayesian methods have been widely applied in the genetics/genomics researches and demonstrating superiority over some regular approaches in certain research areas. Gene-environment and gene-gene interaction studies are among the areas where Bayesian methods may fully exert its functionalities and advantages. This dissertation focuses on developing new Bayesian statistical methods for data analysis with complex gene-environment and gene-gene interactions, as well as extending some existing methods for gene-environment interactions to other related areas. It includes three sections: (1) Deriving the Bayesian variable selection framework for the hierarchical gene-environment and gene-gene interactions; (2) Developing the Bayesian Natural and Orthogonal Interaction (NOIA) models for gene-environment interactions; and (3) extending the applications of two Bayesian statistical methods which were developed for gene-environment interaction studies, to other related types of studies such as adaptive borrowing historical data. We propose a Bayesian hierarchical mixture model framework that allows us to investigate the genetic and environmental effects, gene by gene interactions (epistasis) and gene by environment interactions in the same model. It is well known that, in many practical situations, there exists a natural hierarchical structure between the main effects and interactions in the linear model. Here we propose a model that incorporates this hierarchical structure into the Bayesian mixture model, such that the irrelevant interaction effects can be removed more efficiently, resulting in more robust, parsimonious and powerful models. We evaluate both of the 'strong hierarchical' and 'weak hierarchical' models, which specify that both or one of the main effects between interacting factors must be present for the interactions to be included in the model. The extensive simulation results show that the proposed strong and weak hierarchical mixture models control the proportion of false positive discoveries and yield a powerful approach to identify the predisposing main effects and interactions in the studies with complex gene-environment and gene-gene interactions. We also compare these two models with the 'independent' model that does not impose this hierarchical constraint and observe their superior performances in most of the considered situations. The proposed models are implemented in the real data analysis of gene and environment interactions in the cases of lung cancer and cutaneous melanoma case-control studies. The Bayesian statistical models enjoy the properties of being allowed to incorporate useful prior information in the modeling process. Moreover, the Bayesian mixture model outperforms the multivariate logistic model in terms of the performances on the parameter estimation and variable selection in most cases. Our proposed models hold the hierarchical constraints, that further improve the Bayesian mixture model by reducing the proportion of false positive findings among the identified interactions and successfully identifying the reported associations. This is practically appealing for the study of investigating the causal factors from a moderate number of candidate genetic and environmental factors along with a relatively large number of interactions. The natural and orthogonal interaction (NOIA) models of genetic effects have previously been developed to provide an analysis framework, by which the estimates of effects for a quantitative trait are statistically orthogonal regardless of the existence of Hardy-Weinberg Equilibrium (HWE) within loci. Ma et al. (2012) recently developed a NOIA model for the gene-environment interaction studies and have shown the advantages of using the model for detecting the true main effects and interactions, compared with the usual functional model. In this project, we propose a novel Bayesian statistical model that combines the Bayesian hierarchical mixture model with the NOIA statistical model and the usual functional model. The proposed Bayesian NOIA model demonstrates more power at detecting the non-null effects with higher marginal posterior probabilities. Also, we review two Bayesian statistical models (Bayesian empirical shrinkage-type estimator and Bayesian model averaging), which were developed for the gene-environment interaction studies. Inspired by these Bayesian models, we develop two novel statistical methods that are able to handle the related problems such as borrowing data from historical studies. The proposed methods are analogous to the methods for the gene-environment interactions on behalf of the success on balancing the statistical efficiency and bias in a unified model. By extensive simulation studies, we compare the operating characteristics of the proposed models with the existing models including the hierarchical meta-analysis model. The results show that the proposed approaches adaptively borrow the historical data in a data-driven way. These novel models may have a broad range of statistical applications in both of genetic/genomic and clinical studies.
Resumo:
Dental caries is the most common chronic disease worldwide. It is characterized by the demineralization of tooth enamel caused by acid produced by cariogenic dental bacteria growing on tooth surfaces, termed bacterial biofilms. Cariogenesis is a complex biological process that is influence by multiple factors and is not attributed to a sole causative agent. Instead, caries is associated with multispecies microbial biofilm communities composed of some bacterial species that directly influence the development of a caries lesion and other species that are seemingly benign but must contribute to the community in an uncharacterized way. Clinical analysis of dental caries and its microbial populations is challenging due to many factors including low sensitivity of clinical measurement tools, variability in saliva chemistry, and variation in the microbiota. Our laboratory has developed an in vitro anaerobic biofilm model for dental carries to facilitate both clinical and basic research-based analyses of the multispecies dynamics and individual factors that contribute to cariogenicity. The rational for development of this system was to improve upon the current models that lack key elements. This model places an emphasis on physiological relevance and ease of maintenance and reproducibility. The uniqueness of the model is based on integrating four critical elements: 1) a biofilm community composed of four distinct and representative species typically associated with dental caries, 2) a semi-defined synthetic growth medium designed to mimic saliva, 3) physiologically relevant biofilm growth substrates, and 4) a novel biofilm reactor device designed to facilitate the maintenance and analysis. Specifically, human tooth sections or hydroxyapatite discs embedded into poly(methyl methacrylate) (PMMA) discs are incubated for an initial 24 hr in a static inverted removable substrate (SIRS) biofilm reactor at 37°C under anaerobic conditions in artificial saliva (CAMM) without sucrose in the presence of 1 X 106 cells/ml of each Actinomyces odontolyticus, Fusobacterium nucleatum, Streptococcus mutans, and Veillonella dispar. During days 2 and 3 the samples are maintained continually in CAMM with various exposures to 0.2% sucrose; all of the discs are transferred into fresh medium every 24 hr. To validate that this model is an appropriate in vitro representation of a caries-associated multispecies biofilm, research aims were designed to test the following overarching hypothesis: an in vitro anaerobic biofilm composed of four species (S. mutans, V. dispar, A. odontolyticus, and F. nucleatum) will form a stable biofilm with a community profile that changes in response to environmental conditions and exhibits a cariogenic potential. For these experiments the biofilms as described above were exposed on days 2 and 3 to either CAMM lacking sucrose (no sucrose), CAMM with 0.2% sucrose (constant sucrose), or were transferred twice a day for 1 hr each time into 0.2% sucrose (intermittent sucrose). Four types of analysis were performed: 1) fluorescence microscopy of biofilms stained with Syto 9 and hexidium idodine to determine the biofilm architecture, 2) quantitative PCR (qPCR) to determine the cell number of each species per cm2, 3) vertical scanning interferometry (VSI) to determine the cariogenic potential of the biofilms, and 4) tomographic pH imaging using radiometric fluorescence microscopy after exposure to pH sensitive nanoparticles to measure the micro-environmental pH. The qualitative and quantitative results reveal the expected dynamics of the community profile when exposed to different sucrose conditions and the cariogenic potential of this in vitro four-species anaerobic biofilm model, thus confirming its usefulness for future analysis of primary and secondary dental caries.
Neocortical hyperexcitability defect in a mutant mouse model of spike-wave epilepsy, {\it stargazer}
Resumo:
Single-locus mutations in mice can express epileptic phenotypes and provide critical insights into the naturally occurring defects that alter excitability and mediate synchronization in the central nervous system (CNS). One such recessive mutation (on chromosome (Chr) 15), stargazer(stg/stg) expresses frequent bilateral 6-7 cycles per second (c/sec) spike-wave seizures associated with behavioral arrest, and provides a valuable opportunity to examine the inherited lesion associated with spike-wave synchronization.^ The existence of distinct and heterogeneous defects mediating spike-wave discharge (SWD) generation has been demonstrated by the presence of multiple genetic loci expressing generalized spike-wave activity and the differential effects of pharmacological agents on SWDs in different spike-wave epilepsy models. Attempts at understanding the different basic mechanisms underlying spike-wave synchronization have focused on $\gamma$-aminobutyric acid (GABA) receptor-, low threshold T-type Ca$\sp{2+}$ channel-, and N-methyl-D-aspartate receptor (NMDA-R)-mediated transmission. It is believed that defects in these modes of transmission can mediate the conversion of normal oscillations in a trisynaptic circuit, which includes the neocortex, reticular nucleus and thalamus, into spike-wave activity. However, the underlying lesions involved in spike-wave synchronization have not been clearly identified.^ The purpose of this research project was to locate and characterize a distinct neuronal hyperexcitability defect favoring spike-wave synchronization in the stargazer brain. One experimental approach for anatomically locating areas of synchronization and hyperexcitability involved an attempt to map patterns of hypersynchronous activity with antibodies to activity-induced proteins.^ A second approach to characterizing the neuronal defect involved examining the neuronal responses in the mutant following application of pharmacological agents with well known sites of action.^ In order to test the hypothesis that an NMDA receptor mediated hyperexcitability defect exists in stargazer neocortex, extracellular field recordings were used to examine the effects of CPP and MK-801 on coronal neocortical brain slices of stargazer and wild type perfused with 0 Mg$\sp{2+}$ artificial cerebral spinal fluid (aCSF).^ To study how NMDA receptor antagonists might promote increased excitability in stargazer neocortex, two basic hypotheses were tested: (1) NMDA receptor antagonists directly activate deep layer principal pyramidal cells in the neocortex of stargazer, presumably by opening NMDA receptor channels altered by the stg mutation; and (2) NMDA receptor antagonists disinhibit the neocortical network by blocking recurrent excitatory synaptic inputs onto inhibitory interneurons in the deep layers of stargazer neocortex.^ In order to test whether CPP might disinhibit the 0 Mg$\sp{2+}$ bursting network in the mutant by acting on inhibitory interneurons, the inhibitory inputs were pharmacologically removed by application of GABA receptor antagonists to the cortical network, and the effects of CPP under 0 Mg$\sp{2+}$aCSF perfusion in layer V of stg/stg were then compared with those found in +/+ neocortex using in vitro extracellular field recordings. (Abstract shortened by UMI.) ^