17 resultados para Multicriteria approval


Relevância:

10.00% 10.00%

Publicador:

Resumo:

An interim analysis is usually applied in later phase II or phase III trials to find convincing evidence of a significant treatment difference that may lead to trial termination at an earlier point than planned at the beginning. This can result in the saving of patient resources and shortening of drug development and approval time. In addition, ethics and economics are also the reasons to stop a trial earlier. In clinical trials of eyes, ears, knees, arms, kidneys, lungs, and other clustered treatments, data may include distribution-free random variables with matched and unmatched subjects in one study. It is important to properly include both subjects in the interim and the final analyses so that the maximum efficiency of statistical and clinical inferences can be obtained at different stages of the trials. So far, no publication has applied a statistical method for distribution-free data with matched and unmatched subjects in the interim analysis of clinical trials. In this simulation study, the hybrid statistic was used to estimate the empirical powers and the empirical type I errors among the simulated datasets with different sample sizes, different effect sizes, different correlation coefficients for matched pairs, and different data distributions, respectively, in the interim and final analysis with 4 different group sequential methods. Empirical powers and empirical type I errors were also compared to those estimated by using the meta-analysis t-test among the same simulated datasets. Results from this simulation study show that, compared to the meta-analysis t-test commonly used for data with normally distributed observations, the hybrid statistic has a greater power for data observed from normally, log-normally, and multinomially distributed random variables with matched and unmatched subjects and with outliers. Powers rose with the increase in sample size, effect size, and correlation coefficient for the matched pairs. In addition, lower type I errors were observed estimated by using the hybrid statistic, which indicates that this test is also conservative for data with outliers in the interim analysis of clinical trials.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Existing data, collected from 1st-year students enrolled in a major Health Science Community College in the south central United States, for Fall 2010, Spring 2011, Fall 2011 and Spring 2012 semesters as part of the "Online Navigational Assessment Vehicle, Intervention Guidance, and Targeting of Risks (NAVIGATOR) for Undergraduate Minority Student Success" with CPHS approval number HSC-GEN-07-0158, was used for this thesis. The Personal Background and Preparation Survey (PBPS) and a two-question risk self-assessment subscale were administered to students during their 1st-year orientation. The PBPS total risk score, risk self-assessment total and overall scores, and Under Representative Minority Student (URMS) status were recorded. The purpose of this study is to evaluate and report the predictive validity of the indicators identified above for Adverse Academic Status Events (AASE) and Nonadvancement Adverse Academic Status Events (NAASE) as well as the effectiveness of interventions targeted using the PBPS among a diverse population of health science community college students. The predictive validity of the PBPS for AASE has previously been demonstrated among health science professions and graduate students (Johnson, Johnson, Kim, & McKee, 2009a; Johnson, Johnson, McKee, & Kim, 2009b). Data will be analyzed using binary logistic regression and correlation using SPSS 19 statistical package. Independent variables will include baseline- versus intervention-year treatments, PBPS, risk self-assessment, and URMS status. The dependent variables will be binary AASE and NAASE status. ^ The PBPS was the first reliable diagnostic and prescriptive instrument to establish documented predictive validity for student Adverse Academic Status Events (AASE) among students attending health science professional schools. These results extend the documented validity for the PBPS in predicting AASE to a health science community college student population. Results further demonstrated that interventions introduced using the PBPS were followed by approximately one-third reduction in the odds of Nonadvancement Adverse Academic Status Events (NAASE), controlling for URMS status and risk self-assessment scores. These results indicate interventions introduced using the PBPS may have potential to reduce AASE or attrition among URMS and nonURMS attending health science community colleges on a broader scale; positively impacting costs, shortages, and diversity of health science professionals.^