18 resultados para Modulated logistic map


Relevância:

20.00% 20.00%

Publicador:

Resumo:

External beam radiation therapy is used to treat nearly half of the more than 200,000 new cases of prostate cancer diagnosed in the United States each year. During a radiation therapy treatment, healthy tissues in the path of the therapeutic beam are exposed to high doses. In addition, the whole body is exposed to a low-dose bath of unwanted scatter radiation from the pelvis and leakage radiation from the treatment unit. As a result, survivors of radiation therapy for prostate cancer face an elevated risk of developing a radiogenic second cancer. Recently, proton therapy has been shown to reduce the dose delivered by the therapeutic beam to normal tissues during treatment compared to intensity modulated x-ray therapy (IMXT, the current standard of care). However, the magnitude of stray radiation doses from proton therapy, and their impact on this incidence of radiogenic second cancers, was not known. ^ The risk of a radiogenic second cancer following proton therapy for prostate cancer relative to IMXT was determined for 3 patients of large, median, and small anatomical stature. Doses delivered to healthy tissues from the therapeutic beam were obtained from treatment planning system calculations. Stray doses from IMXT were taken from the literature, while stray doses from proton therapy were simulated using a Monte Carlo model of a passive scattering treatment unit and an anthropomorphic phantom. Baseline risk models were taken from the Biological Effects of Ionizing Radiation VII report. A sensitivity analysis was conducted to characterize the uncertainty of risk calculations to uncertainties in the risk model, the relative biological effectiveness (RBE) of neutrons for carcinogenesis, and inter-patient anatomical variations. ^ The risk projections revealed that proton therapy carries a lower risk for radiogenic second cancer incidence following prostate irradiation compared to IMXT. The sensitivity analysis revealed that the results of the risk analysis depended only weakly on uncertainties in the risk model and inter-patient variations. Second cancer risks were sensitive to changes in the RBE of neutrons. However, the findings of the study were qualitatively consistent for all patient sizes and risk models considered, and for all neutron RBE values less than 100. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. The purpose of this study was to describe the risk factors and demographics of persons with salmonellosis and shigellosis and to investigate both seasonal and spatial variations in the occurrence of these infections in Texas from 2000 to 2004, utilizing time series analyses and the geographic information system digital mapping methods. ^ Methods. Spatial Analysis: MapInfo software was used to map the distribution of age-adjusted rates of reported shigellosis and salmonellosis in Texas from 2000–2004 by zip codes. Census data on above or below poverty level, household income, highest level of educational attainment, race, ethnicity, and urban/rural community status was obtained from the 2000 Decennial Census for each zip code. The zip codes with the upper 10% and lower 10% were compared using t-tests and logistic regression to determine whether there were any potential risk factors. ^ Temporal analysis. Seasonal patterns in the prevalence of infections in Texas from 2000 to 2003 were determined by performing time-series analysis on the numbers of cases of salmonellosis and shigellosis. A linear regression was also performed to assess for trends in the incidence of each disease, along with auto-correlation and multi-component cosinor analysis. ^ Results. Spatial analysis: Analysis by general linear model showed a significant association between infection rates and age, with young children aged less than 5 and those aged 5–9 years having increased risk of infection for both disease conditions. The data demonstrated that those populations with high percentages of people who attained a higher than high school education were less likely to be represented in zip codes with high rates of shigellosis. However, for salmonellosis, logistic regression models indicated that when compared to populations with high percentages of non-high school graduates, having a high school diploma or equivalent increased the odds of having a high rate of infection. ^ Temporal analysis. For shigellosis, multi-component cosinor analyses were used to determine the approximated cosine curve which represented a statistically significant representation of the time series data for all age groups by sex. The shigellosis results show 2 peaks, with a major peak occurring in June and a secondary peak appearing around October. Salmonellosis results showed a single peak and trough in all age groups with the peak occurring in August and the trough occurring in February. ^ Conclusion. The results from this study can be used by public health agencies to determine the timing of public health awareness programs and interventions in order to prevent salmonellosis and shigellosis from occurring. Because young children depend on adults for their meals, it is important to increase the awareness of day-care workers and new parents about modes of transmission and hygienic methods of food preparation and storage. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ordinal outcomes are frequently employed in diagnosis and clinical trials. Clinical trials of Alzheimer's disease (AD) treatments are a case in point using the status of mild, moderate or severe disease as outcome measures. As in many other outcome oriented studies, the disease status may be misclassified. This study estimates the extent of misclassification in an ordinal outcome such as disease status. Also, this study estimates the extent of misclassification of a predictor variable such as genotype status. An ordinal logistic regression model is commonly used to model the relationship between disease status, the effect of treatment, and other predictive factors. A simulation study was done. First, data based on a set of hypothetical parameters and hypothetical rates of misclassification was created. Next, the maximum likelihood method was employed to generate likelihood equations accounting for misclassification. The Nelder-Mead Simplex method was used to solve for the misclassification and model parameters. Finally, this method was applied to an AD dataset to detect the amount of misclassification present. The estimates of the ordinal regression model parameters were close to the hypothetical parameters. β1 was hypothesized at 0.50 and the mean estimate was 0.488, β2 was hypothesized at 0.04 and the mean of the estimates was 0.04. Although the estimates for the rates of misclassification of X1 were not as close as β1 and β2, they validate this method. X 1 0-1 misclassification was hypothesized as 2.98% and the mean of the simulated estimates was 1.54% and, in the best case, the misclassification of k from high to medium was hypothesized at 4.87% and had a sample mean of 3.62%. In the AD dataset, the estimate for the odds ratio of X 1 of having both copies of the APOE 4 allele changed from an estimate of 1.377 to an estimate 1.418, demonstrating that the estimates of the odds ratio changed when the analysis includes adjustment for misclassification. ^