30 resultados para Medicine Sanitary Regulation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pancreatic ductal adenocarcinoma (PDA) is one of the most aggressive malignancies with less than 5% of five year survival rate. New molecular markers and new therapeutic targets are urgently needed for patients with PDA. Oncogenic receptor tyrosine kinase Axl has been reported to be overexpressed in many types of human malignancies, including diffuse glioma, melanoma, osteosarcoma, and carcinomas of lung, colon, prostate, breast, ovary, esophagus, stomach, and kidney. However, the expression and functions of Axl in PDA are unclear. We hypothesized that Axl contributes to the development and progression of PDA. We examined Axl expression in 54 human PDA samples and their paired benign pancreatic tissue by immunohistochemistry, we found that Axl was overexpressed in 70% of stage II PDAs, but only 22% of benign ducts (P=0.0001). Axl overexpression was associated with higher frequencies of distant metastasis and was an independent prognostic factor for both poor overall and recurrence-free survivals in patients with stage II PDA (p = 0.03 and 0.04). Axl silencing by shRNA in pancreatic cancer cell lines, panc-28 and Panc-1, decreased tumor cell migration and invasion and sensitized PDA cells to apoptosis stimuli such as γ-irradiation and serum starvation. In addition, we found that Axl-mediated Akt and NF-κB activation and up regulation of MMP2 were involved in the invasion, migration and survival of PDA cells. Thus, we demonstrate that Axl plays an important role in the development and progression of PDA. Targeting Axl signaling pathway may represent a new approach for the treatment of PDA. To understand the molecular mechanisms of Axl overexpression in PDA, we found that Axl expression was down-regulated by hematopoietic progenitor kinase 1 (HPK1), a newly identified tumor suppressor in PDA. HPK1 is lost in over 95% of PDAs. Restoration of HPK1 in PDA cells down-regulated Axl expression. HPK1-mediated Axl degradation was inhibited by leupeptin, baflomycin A1, and monensin, suggesting that HPK1-mediated Axl degradation was through endocytosis-lysosome pathway. HPK1 interacted with and phosphorylated dynamin, a critical component of endocytosis pathway. Overexpression of dominant negative form of dynamin blocked the HPK1-mediated Axl degradation. Therefore we concluded that HPK1-mediated Axl degradation was through endocytosis-lysosome pathway and loss of HPK1 expression may contribute to Axl overexpression in PDAs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Retinoic acid is a small lipophilic molecule that exerts profound effects on the growth and differentiation of both normal and transformed cells. It is also a natural morphogen that is critical in the development of embryonic structures. The molecular effects of retinoic acid involve alterations in the expression of several proteins and these changes are presumably mediated in part by alterations in gene expression. For instance, retinoic acid causes a rapid induction of tissue transglutaminase, an enzyme involved in protein cross-linking. The molecular mechanisms responsible for the effects of retinoic acid on gene expression have not been characterized. To approach this question, I have isolated and characterized tissue transglutaminase of cDNA clones. The deduced amino acid sequences of tissue transglutaminase and of factor XIIIa showed a relatively high degree of homology in their putative calcium binding domains.^ To explore the mechanism of induction of this enzyme, both primary (macrophages) and cultured cells (Swiss 3T3-C2 and CHO fibroblasts) were used. I found that retinoic acid is a general inducer of tissue transglutaminase mRNA in these cells. In murine peritoneal macrophages retinoic acid causes a rapid accumulation of this mRNA and this effect is independent of concurrent protein synthesis. The retinoic acid effect is not mediated by a post-transcriptional increase in the stability of the tissue transglutaminase mRNA, but appears to involve an increase in the transcription rate of the tissue transglutaminase gene. This provides the first example of regulation by retinoic acid of a specific gene, supporting the hypothesis that these molecules act by directly regulating the transcriptional activity of specific genes. A molecular model for the effects of retinoic acid on the expression of genes linked to cellular proliferation and differentiation is proposed. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cytochromes P450 catalyze a monooxygenase reaction in which molecular oxygen is split and one oxygen atom is incorporated into the substrate. As a whole, P450 researchers have focused most of their attention on substrate metabolism and relatively little on how these enzymes are regulated. This study will focus on the regulation of two P450 isoforms known as, CYP2D6 and CYP4F11. ^ The human CYP2D gene locus contains two pseudogenes and one functional gene known as CYP2D6. This locus is highly polymorphic and produces several alternatively spliced transcripts from the pseudogene CYP2D7. My objective was to understand the role of SV5-in (splice variant 5), one of several alternative splice variants transcribed from the CYP2D7 pseudogene. My results indicate that SV5-in mRNA causes an increase in CYP2D6 protein levels and suggest that there is a role for SV5-in in regulation of CYP2D6 expression. ^ Second, CYP4F11 is a recently discovered and uncharacterized isoform, derived from the CYP4F subfamily. It metabolizes several clinically relevant drugs (i.e.—erythromycin and benzphetamine) and some endogenous inflammatory mediators (i.e.—LTB4). After evaluation of microarray data, I observed an increase in CYP4F11 mRNA levels from wild-type HCT116 cells compared to p53-null cells. Our objectives were to explore and understand this connection between p53 and CYP4F11. Microarray data were confirmed by Q-PCR, after which this effect was again observed at the protein level via Western blot and again at the promoter level via luciferase assay and chromatin immunoprecipitation. Our results indicate that p53 protein regulates expression of CYP4F11 mRNA and protein through CYP4F11 promoter binding (note that p53 binding to CYP4F11 DNA was not shown to be direct). These results signify a whole new level of regulation of drug metabolizing enzymes by p53. ^ An understanding of CYP4F11 regulation by p53 could help us understand another pathway leading to apoptosis or cell growth arrest. This can aid future drug studies and discover new drug metabolism pathways under the control of a tumor suppressor protein. An understanding of the CYP2D6 regulation pathway could illuminate the role of non-coding RNAs in the P450 field and potentially explain several inter-individual drug response variations observed in clinical medicine that are not yet completely explained by genotyping analysis. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When subjected to increased workload, the heart responds metabolically by increasing its reliance on glucose and structurally by increasing the size of myocytes. Whether changes in metabolism regulate the structural remodeling process is unknown. A likely candidate for a link between metabolism and growth in the heart is the mammalian target of rapamycin (mTOR), which couples energy and nutrient metabolism to cell growth. Recently, sustained mTOR activation has also been implicated in the development of endoplasmic reticulum (ER) stress. We explored possible mechanisms by which acute metabolic changes in the hemodynamically stressed heart regulate mTOR activation, ER stress and cardiac function in the ex vivo isolated working rat heart. Doubling the heart’s workload acutely increased rates of glucose uptake beyond rates of glucose oxidation. The concomitant increase in glucose 6-phosphate (G6P) was associated with mTOR activation, endoplasmic reticulum (ER) stress and impaired contractile function. Both rapamycin and metformin restored glycolytic homeostasis, relieved ER stress and rescued contractile function. G6P and ER stress were also downregulated with mechanical unloading of failing human hearts. Taken together, the data support the hypothesis that metabolic remodeling precedes, triggers, and sustains structural remodeling of the heart and implicate a critical role for G6P in load-induced contractile dysfunction, mTOR activation and ER stress. In general terms, the intermediary metabolism of energy providing substrates provides signals for the onset and progression of hypertrophy and heart failure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Activation of Rho family small G proteins is thought to be a critical event in breast cancer development and metastatic progression. Rho protein activation is stimulated by a family of enzymes known as guanine nucleotide exchange factors (Rho GEFs). The neuroepithelioma transforming gene 1 (Net1) is a Rho GEF specific for the RhoA subfamily that is overexpressed in primary breast tumors and breast cancer cell lines. Net1 isoform expression is also required for migration and invasion of breast cancer cells in vitro. These data indicate that Net1 may be a critical regulator of metastatic progression in breast cancer. Net1 activity is negatively regulated by sequestration in the nucleus, and relocalization of Net1 outside the nucleus is required to stimulate RhoA activation, actin cytoskeletal reorganization, and oncogenic transformation. However, regulatory mechanisms controlling the extranuclear localization of Net1 have not been identified. In this study, we have addressed the regulation of Net1A isoform localization by Rac1. Specifically, co-expression of constitutively active Rac1 with Net1A stimulates the relocalization of Net1A from the nucleus to the plasma membrane in breast cancer cells, and results in Net1A activation. Importantly, Net1A localization is also driven by endogenous Rac1 activity. Net1A relocalizes outside the nucleus in cells spreading on collagen, and when endogenous Rac1 expression was silenced by siRNA, Net1A remained nuclear in spreading cells. These data indicate that Rac1 controls the localization of the Net1A isoform and suggests a physiological role for Net1A in breast cancer cell adhesion and motility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most human tumors contain a population of cells with stem cell properties, called cancer stem cells (CSCs), which are believed to be responsible for tumor establishment, metastasis, and resistance to clinical therapy. It’s crucial to understand the regulatory mechanisms unique to CSCs, so that we may design CSC-specific therapeutics. Recent discoveries of microRNA (miRNA) have provided a new avenue in understanding the regulatory mechanisms of cancer. However, how miRNAs may regulate CSCs is still poorly understood. Here, we present miRNA expression profiling in six populations of prostate cancer (PCa) stem/progenitor cells that possess distinct tumorigenic properties. Six miRNAs were identified to be commonly and differentially expressed, namely, four miRNAs (miR-34a, let-7b, miR-106a and miR-141) were under-expressed, and two miRNAs (miR-301 and miR-452) were over-expressed in the tumorigenic subsets compared to the corresponding marker-negative subpopulations. Among them, the expression patterns of miR-34, let-7b, miR-141 and miR-301 were further confirmed in the CD44+ human primary prostate cancer (HPCa) samples. We then showed that miR-34a functioned as a critical negative regulator in prostate CSCs and PCa development and metastasis. Over-expression of miR-34a in either bulk or CD44+ PCa cells significantly suppressed clonal expansion, tumor development and metastasis. Systemic delivery of miR-34a in tumor-bearing mice demonstrated a potent therapeutic effect again tumor progression and metastasis, leading to extended animal survival. Of great interest, we identified CD44 itself as a direct and relevant downstream target of miR-34a in mediating its tumor-inhibitory effects. Like miR-34a, let-7 manifests similar tumor suppressive effects in PCa cells. In addition, we observed differential mechanisms between let-7 and miR-34a on cell cycle, with miR-34a mainly inducing G1 cell-cycle arrest followed by cell senescence and let-7 inducing G2/M arrest. MiR-301, on the other hand, exerted a cell type dependent effect in regulating prostate CSC properties and PCa development. In summary, our work reveals that the prostate CSC populations display unique miRNA expression signatures and different miRNAs distinctively and coordinately regulate various aspects of CSC properties. Altogether, our results lay a scientific foundation for developing miRNA-based anti-cancer therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clostridium difficile is the leading definable cause of nosocomial diarrhea worldwide due to its virulence, multi-drug resistance, spore-forming ability, and environmental persistence. The incidence of C. difficile infection (CDI) has been increasing exponentially in the last decade. Virulent strains of C. difficile produce either toxin A and/or toxin B, which are essential for the pathogenesis of this bacterium. Current methods for diagnosing CDI are mostly qualitative tests that detect the bacterium, the toxins, or the toxin genes. These methods do not differentiate virulent C. difficile strains that produce active toxins from non-virulent strains that do not produce toxins or produce inactive toxins. Based on the knowledge that C. difficile toxins A and B cleave a substrate that is stereochemically similar to the native substrate of the toxins, uridine diphosphoglucose, a quantitative, cost-efficient assay, the Cdifftox activity assay, was developed to measure C. difficile toxin activity. The concept behind the activity assay was modified to develop a novel, rapid, sensitive, and specific assay for C. difficile toxins in the form of a selective and differential agar plate culture medium, the Cdifftox Plate assay (CDPA). This assay combines in a single step the specific identification of C. difficile strains and the detection of active toxin(s). The CDPA was determined to be extremely accurate (99.8% effective) at detecting toxin-producing strains based on the analysis of 528 C. difficile isolates selected from 50 tissue culture cytotoxicity assay-positive clinical stool samples. This new assay advances and improves the culture methodology in that only C. difficile strains will grow on this medium and virulent strains producing active toxins can be differentiated from non-virulent strains. This new method reduces the time and effort required to isolate and confirm toxin-producing C. difficile strains and provides a clinical isolate for antibiotic susceptibility testing and strain typing. The Cdifftox activity assay was used to screen for inhibitors of toxin activity. Physiological levels of the common human conjugated bile salt, taurocholate, was found to inhibit toxin A and B in vitro activities. When co-incubated ex vivo with purified toxin B, taurocholate protected Caco-2 colonic epithelial cells from the damaging effects of the toxin. Furthermore, using a caspase-3 detection assay, taurocholate reduced the extent of toxin B-induced Caco-2 cell apoptosis. These results suggest that bile salts can be effective in protecting the gut epithelium from C. difficile toxin damage, thus, the delivery of physiologic amounts of taurocholate to the colon, where it is normally in low concentration, could be useful in CDI treatment. These findings may help to explain why bile rich small intestine is spared damage in CDI, while the bile salt poor colon is vulnerable in CDI. Toxin synthesis in C. difficile occurs during the stationary phase, but little is known about the regulation of these toxins. It was hypothesized that C. difficile toxin synthesis is regulated by a quorum sensing mechanism. Two lines of evidence supported this hypothesis. First, a small (KDa), diffusible, heat-stable toxin-inducing activity accumulates in the medium of high-density C. difficile cells. This conditioned medium when incubated with low-density log-phase cells causes them to produce toxin early (2-4 hrs instead of 12-16 hrs) and at elevated levels when compared with cells grown in fresh medium. These data suggested that C. difficile cells extracellularly release an inducing molecule during growth that is able to activate toxin synthesis prematurely and demonstrates for the first time that toxin synthesis in C. difficile is regulated by quorum signaling. Second, this toxin-inducing activity was partially purified from high-density stationary-phase culture supernatant fluid by HPLC and confirmed to induce early toxin synthesis, even in C. difficile virulent strains that over-produce the toxins. Mass spectrometry analysis of the purified toxin-inducing fraction from HPLC revealed a cyclic compound with a mass of 655.8 Da. It is anticipated that identification of this toxin-inducing compound will advance our understanding of the mechanism involved in the quorum-dependent regulation of C. difficile toxin synthesis. This finding should lead to the development of even more sensitive tests to diagnose CDI and may lead to the discovery of promising novel therapeutic targets that could be harnessed for the treatment C. difficile infections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The degradation of proteins by the ubiquitin proteasome system is essential for cellular homeostasis in the heart. An important regulator of metabolic homeostasis is AMP-activated protein kinase (AMPK). During nutrient deprivation, AMPK is activated and intracellular proteolysis is enhanced through the ubiquitin proteasome system (UPS). Whether AMPK plays a role in protein degradation through the UPS in the heart is not known. Here I present data in support of the hypothesis that AMPK transcriptionally regulates key players in the UPS, which, under extreme conditions can be detrimental to the heart. The ubiquitin ligases MAFbx /Atrogin-1 and MuRF1, key regulators of protein degradation, and AMPK activity are increased during nutrient deprivation. Pharmacologic and genetic activation of AMPK is sufficient for the induction of MAFbx/Atrogin-1 and MuRF1 in cardiomyocytes and in the heart in vivo. Comprehensive experiments demonstrate that the molecular mechanism by which AMPK regulates MuRF1 expression is through the transcription factor myocyte enhancer factor 2 (MEF2), which is involved in stress response and cardiomyocyte remodeling. MuRF1 is required for AMPK-mediated protein degradation through the UPS in cardiomyocytes. Consequently, the absence of MuRF1 during chronic fasting preserves cardiac function, possibly by limiting degradation of critical metabolic enzymes. Furthermore, during cardiac hypertrophy, chronic activation of AMPK also leads to cardiac dysfunction, possibly through enhanced protein degradation and metabolic dysregulation. Collectively, my findings demonstrate that AMPK regulates expression of ubiquitin ligases which are required for UPS-mediated protein degradation in the heart. Based on these results, I propose that specific metabolic signals may serve as modulators of intracellular protein degradation in the heart.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Growth factor signaling promotes anabolic processes via activation of the PI3K-Akt kinase cascade. Deregulation of the growth factor-dependent PI3K-Akt pathway was implicated in tumorigenesis. Akt is an essential serine/threonine protein kinase that controls multiple physiological functions such as cell growth, proliferation, and survival to maintain cellular homeostasis. Recently, the mammalian Target of Rapamycin Complex 2 (mTORC2) was identified as the main Akt Ser-473 kinase, and Ser-473 phosphorylation is required for Akt hyperactivation. However, the detailed mechanism of mTORC2 regulation in response to growth factor stimulation or cellular stresses is not well understood. In the first project, we studied the regulation of the mTORC2-Akt signaling under ER stress. We identified the inactivation of mTORC2 by glycogen synthase kinase-3β (GSK-3β). Under ER stress, the essential mTORC2 component, rictor, is phosphorylated by GSK-3β at Ser-1235. This phosphorylation event results in the inhibition of mTORC2 kinase activity by interrupting Akt binding to mTORC2. Blocking rictor Ser-1235 phosphorylation can attenuate the negative impacts of GSK-3β on mTORC2/Akt signaling and tumor growth. Thus, our work demonstrated that GSK-3β-mediated rictor Ser-1235 phosphorylation in response to ER stress interferes with Akt signaling by inhibiting mTORC2 kinase activity. In the second project, I investigated the regulation of the mTORC2 integrity. We found that basal mTOR kinase activity depends on ATP level, which is tightly regulated by cell metabolism. The ATP-sensitive mTOR kinase is required for SIN1 protein phosphorylation and stabilization. SIN1 is an indispensable subunit of mTORC2 and is required for the complex assembly and mTORC2 kinase activity. Our findings reveal that mTOR-mediated phosphorylation of SIN1 is critical for maintaining complex integrity by preventing SIN1 from lysosomal degradation. In sum, our findings verify two distinct mTORC2 regulatory mechanisms via its components rictor and SIN1. First, GSK-3β-mediated rictor Ser-1235 phosphorylation results in mTORC2 inactivation by interfering its substrate binding ability. Second, mTOR-mediated Ser-260 phosphorylation of SIN1 preserves its complex integrity. Thus, these two projects provide novel insights into the regulation of mTORC2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Injury is an inevitable part of life, making wound healing essential for survival. In postembryonic skin, wound closure requires that epidermal cells recognize the presence of a gap and change their behavior to migrate across it. In Drosophila larvae, wound closure requires two signaling pathways (the Jun N-terminal kinase (JNK) pathway and the Pvr receptor tyrosine kinase signaling pathway) and regulation of the actin cytoskeleton. In this and other systems, it remains unclear how the signaling pathways that initiate wound closure connect to the actin regulators that help execute wound- induced cell migrations. Here we show that chickadee, which encodes the Drosophila Profilin, a protein important for actin filament recycling and cell migration during development, is required for the physiological process of larval epidermal wound closure. After injury, chickadee is transcriptionally upregulated in cells proximal to the wound. We found that JNK, but not Pvr, mediates the increase in chic transcription through the Jun and Fos transcription factors. Finally, we show that chic deficient larvae fail to form a robust actin cable along the wound edge and also fail to form normal filopodial and lamellipodial extensions into the wound gap. Our results thus connect a factor that regulates actin monomer recycling to the JNK signaling pathway during wound closure. They also reveal a physiological function for an important developmental regulator of actin and begin to tease out the logic of how the wound repair response is organized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tumor Suppressor Candidate 2 (TUSC2) is a novel tumor suppressor gene located in the human chromosome 3p21.3 region. TUSC2 mRNA transcripts could be detected on Northern blots in both normal lung and some lung cancer cell lines, but no endogenous TUSC2 protein could be detected in a majority of lung cancer cell lines. Mechanisms regulating TUSC2 protein expression and its inactivation in primary lung cancer cells are largely unknown. We investigated the role of the 5’- and 3’-untranslated regions (UTRs) of the TUSC2 gene in the regulation of TUSC2 protein expression. We found that two small upstream open-reading frames (uORFs) in the 5’UTR of TUSC2 could markedly inhibit the translational initiation of TUSC2 protein by interfering with the “scanning” of the ribosome initiation complexes. Site-specific stem-loop array reverse transcription-polymerase chain reaction (SLA-RT-PCR) verified several micoRNAs (miRNAs) targeted at 3’UTR and directed TUSC2 cleavage and degradation. In addition, we used the established let-7-targeted high mobility group A2 (Hmga2) mRNA as a model system to study the mechanism of regulation of target mRNA by miRNAs in mammalian cells under physiological conditions. There have been no evidence of direct link between mRNA downregulation and mRNA cleavages mediated by miRNAs. Here we showed that the endonucleolytic cleavages on mRNAs were initiated by mammalian miRNA in seed pairing style. Let-7 directed cleavage activities among the eight predicted potential target sites have varied efficiency, which are influenced by the positional and the structural contexts in the UTR. The 5’ cleaved RNA fragments were mostly oligouridylated at their 3’-termini and accumulated for delayed 5’–3’ degradation. RNA fragment oligouridylation played important roles in marking RNA fragments for delayed bulk degradation and in converting RNA degradation mode from 3’–5’ to 5’–3’ with cooperative efforts from both endonucleolytic and non-catalytic miRNA-induced silencing complex (miRISC). Our findings point to a mammalian miRNA-mediated mechanism for the regulation of mRNA that miRNA can decrease target mRNA through target mRNA cleavage and uridine addition

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cells govern their activities and modulate their interactions with the environment to achieve homeostasis. The heat shock response (HSR) is one of the most well studied fundamental cellular responses to environmental and physiological challenges, resulting in rapid synthesis of heat shock proteins (HSPs), which serve to protect cellular constituents from the deleterious effects of stress. In addition to its role in cytoprotection, the HSR also influences lifespan and is associated with a variety of human diseases including cancer, aging and neurodegenerative disorders. In most eukaryotes, the HSR is primarily mediated by the highly conserved transcription factor HSF1, which recognizes target hsp genes by binding to heat shock elements (HSEs) in their promoters. In recent years, significant efforts have been made to identify small molecules as potential pharmacological activators of HSF1 that could be used for therapeutic benefit in the treatment of human diseases relevant to protein conformation. However, the detailed mechanisms through which these molecules drive HSR activation remain unclear. In this work, I utilized the baker's yeast Saccharomyces cerevisiae as a model system to identify a group of thiol-reactive molecules including oxidants, transition metals and metalloids, and electrophiles, as potent activators of yeast Hsf1. Using an artificial HSE-lacZ reporter and the glucocorticoid receptor system (GR), these diverse thiol-reactive compounds are shown to activate Hsf1 and inhibit Hsp90 chaperone complex activity in a reciprocal, dose-dependent manner. To further understand whether cells sense these reactive compounds through accumulation of unfolded proteins, the proline analog azetidine-2-carboxylic acid (AZC) and protein cross-linker dithiobis(succinimidyl propionate) (DSP) were used to force misfolding of nascent polypeptides and existing cytosolic proteins, respectively. Both unfolding reagents display kinetic HSP induction profiles dissimilar to those generated by thiol-reactive compounds. Moreover, AZC treatment leads to significant cytotoxicity, which is not observed in the presence of the thiol-reactive compounds at the concentrations sufficient to induce Hsf1. Additionally, DSP treatment has little to no effect on Hsp90 functions. Together with the ultracentrifugation analysis of cell lysates that detected no insoluble protein aggregates, my data suggest that at concentrations sufficient to induce Hsf1, thiol-reactive compounds do not induce the HSR via a mechanism based on accumulation of unfolded cytosolic proteins. Another possibility is that thiol-reactive compounds may influence aspects of the protein quality control system such as the ubiquitin-proteasome system (UPS). To address this hypothesis, β-galactosidase reporter fusions were used as model substrates to demonstrate that thiol-reactive compounds do not inhibit ubiquitin activating enzymes (E1) or proteasome activity. Therefore, thiol-reactive compounds do not activate the HSR by inhibiting UPS-dependent protein degradation. I therefore hypothesized that these molecules may directly inactivate protein chaperones, known as repressors of Hsf1. To address this possibility, a thiol-reactive biotin probe was used to demonstrate in vitro that the yeast cytosolic Hsp70 Ssa1, which partners with Hsp90 to repress Hsf1, is specifically modified. Strikingly, mutation of conserved cysteine residues in Ssa1 renders cells insensitive to Hsf1 activation by cadmium and celastrol but not by heat shock. Conversely, substitution with the sulfinic acid and steric bulk mimic aspartic acid led to constitutive activation of Hsf1. Cysteine 303, located in the nucleotide-binding/ATPase domain of Ssa1, was shown to be modified in vivo by a model organic electrophile using Click chemistry technology, verifying that Ssa1 is a direct target for thiol-reactive compounds through adduct formation. Consistently, cadmium pretreatment promoted cells thermotolerance, which is abolished in cells carrying SSA1 cysteine mutant alleles. Taken together, these findings demonstrate that Hsp70 acts as a sensor to induce the cytoprotective heat shock response in response to environmental or endogenously produced thiol-reactive molecules and can discriminate between two distinct environmental stressors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inflammatory breast cancer (IBC) is a rare but very aggressive form of locally advanced breast cancer (1-6% of total breast cancer patients in United States), with a 5-year overall survival rate of only 40.5%, compared with 85% of the non-IBC patients. So far, a unique molecular signature for IBC able to explain the dramatic differences in the tumor biology between IBC and non-IBC has not been identified. As immune cells in the tumor microenvironment plays an important role in regulating tumor progression, we hypothesized that tumor-associated dendritic cells (TADC) may be responsible for regulating the development of the aggressive characteristics of IBC. MiRNAs can be released into the extracellular space and mediate the intercellular communication by regulating target gene expression beyond their cells of origin. We hypothesized that miRNAs released by IBC cells can induce an increased activation status, secretion of pro-inflammatory cytokines and migration ability of TADC. In an in vitro model of IBC tumor microenvironment, we found that the co-cultured of the IBC cell line SUM-149 with immature dendritic cells (iDCSUM-149) induced a higher degree of activation and maturation of iDCSUM-149 upon stimulation with lipopolysaccharide (LPS) compared with iDCs co-cultured with the non-IBC cell line SUM-159 (iDCSUM-159), resulting in: increased expression of the costimulatory and activation markers; higher production of pro-inflammatory cytokines (TNF-a, IL-6); and 3) higher migratory ability. These differences were due to the exosome-mediated transfer of miR-19a and miR-146a from SUM-149 and SUM-159, respectively, to iDCs, causing the downregulation of the miR-19a target genes PTEN, SOCS-1 and the miR-146a target genes IRAK1, TRAF6. PTEN, SOCS-1 and IRAK1, TRAF6 are important negative and positive regulator of cytokine- and TLR-mediated activation/maturation signaling pathway in DCs. Increased levels of IL-6 induced the upregulation of miR-19a synthesis in SUM-149 cells that was associated with the induction of CD44+CD24-ALDH1+ cancer stem cells (CSCs) with epithelial-to-mesenchymal transition (EMT) characteristics. In conclusion, in IBC tumor microenvironment IL-6/miR-19a axis can represent a self-sustaining loop able to maintain a pro-inflammatory status of DCs, leading to the development of tumor cells with high metastatic potential (EMT CSCs) responsible of the poor prognosis in IBC patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Role of Neurogranin in the regulation of calcium binding to Calmodulin Anuja Chandrasekar, B.S Advisor: M. Neal Waxham, Ph.D The overall goal of my project was to gain a quantitative understanding of how the interaction between two proteins neurogranin (RC3) and calmodulin (CaM) alters a fundamental property of CaM. CaM, has been extensively studied for more than four decades due to its seminal role in almost all biological functions as a calcium signal transducer. Calcium signals in cardiac and neuronal cells are exquisitely precise and enable activation of some processes while down-regulating others. CaM, with its four calcium binding sites, serves as a central component of calcium signaling in these cells. It is aided in this role as a regulatory hub that differentially activates targets in response to a calcium flux by proteins that alter its calcium binding properties. Neurogranin, also known as RC3, is a member of a family of small neuronal IQ (SNIQ) domain proteins that was originally thought to play a ‘capacitive’ role by sequestering CaM until a calcium influx of sufficient intensity arrived. However, based on earlier work in our lab on neurogranin, we believe that this protein plays a more nuanced role in neurons than simply acting as a CaM buffer. We believe that neurogranin is one of the proteins which, by altering the kinetics of calcium binding allow CaM to decode a variety of signals with fine precision. To quantify the interaction between CaM, neurogranin and calcium, I used biophysical techniques and computational simulations. From my results, I conclude that neurogranin finely regulates the proportion of calcium-saturated CaM and thereby directs CaM’s target specificity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The neu gene (also c-erbB-2 or HER2) encodes a 185 kilodalton protein that is frequently overexpressed in breast, ovarian and non-small cell lung cancers. Study of the regulation of neu indicates that neu gene expression can be modulated by c-myc or by the adenovirus 5 E1a gene product. This study demonstrates that the transforming protein, large T antigen, of the simian virus 40 represses neu promoter activity. Repression of neu by large T antigen is mediated through the region $-$172 to $-$79 (relative to first ATG) of the neu promoter--unlike through $-$312 to $-$172 for c-myc or E1a. This suggests a different pathway for repression of neu by large T antigen. The 10 amino acid region of large T required for binding the tumor suppressor, retinoblastoma gene product, Rb, is not necessary for repression of neu. Moreover, the tumor suppressors, Rb and p53 can independently inhibit neu promoter activity. Rb inhibits neu through a 10 base pair G-rich enhancer (GTG element) ($-$243 to $-$234) and also through regions close to transcription initiation sites ($-$172 to $-$79). Mutant Rb unable to complex large T is able to repress the region close to transcription initiation but not the GTG enhancer. Thus, Rb inhibits the two regulatory domains of the neu gene by different mechanisms. Both Rb and p53 can repress the transforming activity of activated neu in focus forming assays. These data provide evidence that tumor suppressors regulate expression of growth stimulatory genes such as neu. Therefore, one reason for the overexpression of neu that is frequently seen in breast cancer cells may be due to functional inactivation of Rb and p53 which is also a common occurrence in breast cancer cells. ^