22 resultados para Medical errors


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing amounts of clinical research data are collected by manual data entry into electronic source systems and directly from research subjects. For this manual entered source data, common methods of data cleaning such as post-entry identification and resolution of discrepancies and double data entry are not feasible. However data accuracy rates achieved without these mechanisms may be higher than desired for a particular research use. We evaluated a heuristic usability method for utility as a tool to independently and prospectively identify data collection form questions associated with data errors. The method evaluated had a promising sensitivity of 64% and a specificity of 67%. The method was used as described in the literature for usability with no further adaptations or specialization for predicting data errors. We conclude that usability evaluation methodology should be further investigated for use in data quality assurance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Follow-up of abnormal outpatient laboratory test results is a major patient safety concern. Electronic medical records can potentially address this concern through automated notification. We examined whether automated notifications of abnormal laboratory results (alerts) in an integrated electronic medical record resulted in timely follow-up actions. METHODS: We studied 4 alerts: hemoglobin A1c > or =15%, positive hepatitis C antibody, prostate-specific antigen > or =15 ng/mL, and thyroid-stimulating hormone > or =15 mIU/L. An alert tracking system determined whether the alert was acknowledged (ie, provider clicked on and opened the message) within 2 weeks of transmission; acknowledged alerts were considered read. Within 30 days of result transmission, record review and provider contact determined follow-up actions (eg, patient contact, treatment). Multivariable logistic regression models analyzed predictors for lack of timely follow-up. RESULTS: Between May and December 2008, 78,158 tests (hemoglobin A1c, hepatitis C antibody, thyroid-stimulating hormone, and prostate-specific antigen) were performed, of which 1163 (1.48%) were transmitted as alerts; 10.2% of these (119/1163) were unacknowledged. Timely follow-up was lacking in 79 (6.8%), and was statistically not different for acknowledged and unacknowledged alerts (6.4% vs 10.1%; P =.13). Of 1163 alerts, 202 (17.4%) arose from unnecessarily ordered (redundant) tests. Alerts for a new versus known diagnosis were more likely to lack timely follow-up (odds ratio 7.35; 95% confidence interval, 4.16-12.97), whereas alerts related to redundant tests were less likely to lack timely follow-up (odds ratio 0.24; 95% confidence interval, 0.07-0.84). CONCLUSIONS: Safety concerns related to timely patient follow-up remain despite automated notification of non-life-threatening abnormal laboratory results in the outpatient setting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A large number of ridge regression estimators have been proposed and used with little knowledge of their true distributions. Because of this lack of knowledge, these estimators cannot be used to test hypotheses or to form confidence intervals.^ This paper presents a basic technique for deriving the exact distribution functions for a class of generalized ridge estimators. The technique is applied to five prominent generalized ridge estimators. Graphs of the resulting distribution functions are presented. The actual behavior of these estimators is found to be considerably different than the behavior which is generally assumed for ridge estimators.^ This paper also uses the derived distributions to examine the mean squared error properties of the estimators. A technique for developing confidence intervals based on the generalized ridge estimators is also presented. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Errors in the administration of medication represent a significant loss of medical resources and pose life altering or life threatening risks to patients. This paper considered the question, what impact do Computerized Physician Order Entry (CPOE) systems have on medication errors in the hospital inpatient environment? Previous reviews have examined evidence of the impact of CPOE on medication errors, but have come to ambiguous conclusions as to the impact of CPOE and decision support systems (DSS). Forty-three papers were identified. Thirty-one demonstrated a significant reduction in prescribing error rates for all or some drug types; decreases in minor errors were most often reported. Several studies reported increases in the rate of duplicate orders and failures to remove contraindicated drugs, often attributed to inappropriate design or to an inability to operate the system properly. The evidence on the effectiveness of CPOE to reduce errors in medication administration is compelling though it is limited by modest study sample sizes and designs. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clinical Research Data Quality Literature Review and Pooled Analysis We present a literature review and secondary analysis of data accuracy in clinical research and related secondary data uses. A total of 93 papers meeting our inclusion criteria were categorized according to the data processing methods. Quantitative data accuracy information was abstracted from the articles and pooled. Our analysis demonstrates that the accuracy associated with data processing methods varies widely, with error rates ranging from 2 errors per 10,000 files to 5019 errors per 10,000 fields. Medical record abstraction was associated with the highest error rates (70–5019 errors per 10,000 fields). Data entered and processed at healthcare facilities had comparable error rates to data processed at central data processing centers. Error rates for data processed with single entry in the presence of on-screen checks were comparable to double entered data. While data processing and cleaning methods may explain a significant amount of the variability in data accuracy, additional factors not resolvable here likely exist. Defining Data Quality for Clinical Research: A Concept Analysis Despite notable previous attempts by experts to define data quality, the concept remains ambiguous and subject to the vagaries of natural language. This current lack of clarity continues to hamper research related to data quality issues. We present a formal concept analysis of data quality, which builds on and synthesizes previously published work. We further posit that discipline-level specificity may be required to achieve the desired definitional clarity. To this end, we combine work from the clinical research domain with findings from the general data quality literature to produce a discipline-specific definition and operationalization for data quality in clinical research. While the results are helpful to clinical research, the methodology of concept analysis may be useful in other fields to clarify data quality attributes and to achieve operational definitions. Medical Record Abstractor’s Perceptions of Factors Impacting the Accuracy of Abstracted Data Medical record abstraction (MRA) is known to be a significant source of data errors in secondary data uses. Factors impacting the accuracy of abstracted data are not reported consistently in the literature. Two Delphi processes were conducted with experienced medical record abstractors to assess abstractor’s perceptions about the factors. The Delphi process identified 9 factors that were not found in the literature, and differed with the literature by 5 factors in the top 25%. The Delphi results refuted seven factors reported in the literature as impacting the quality of abstracted data. The results provide insight into and indicate content validity of a significant number of the factors reported in the literature. Further, the results indicate general consistency between the perceptions of clinical research medical record abstractors and registry and quality improvement abstractors. Distributed Cognition Artifacts on Clinical Research Data Collection Forms Medical record abstraction, a primary mode of data collection in secondary data use, is associated with high error rates. Distributed cognition in medical record abstraction has not been studied as a possible explanation for abstraction errors. We employed the theory of distributed representation and representational analysis to systematically evaluate cognitive demands in medical record abstraction and the extent of external cognitive support employed in a sample of clinical research data collection forms. We show that the cognitive load required for abstraction in 61% of the sampled data elements was high, exceedingly so in 9%. Further, the data collection forms did not support external cognition for the most complex data elements. High working memory demands are a possible explanation for the association of data errors with data elements requiring abstractor interpretation, comparison, mapping or calculation. The representational analysis used here can be used to identify data elements with high cognitive demands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Next-generation sequencing (NGS) technology has become a prominent tool in biological and biomedical research. However, NGS data analysis, such as de novo assembly, mapping and variants detection is far from maturity, and the high sequencing error-rate is one of the major problems. . To minimize the impact of sequencing errors, we developed a highly robust and efficient method, MTM, to correct the errors in NGS reads. We demonstrated the effectiveness of MTM on both single-cell data with highly non-uniform coverage and normal data with uniformly high coverage, reflecting that MTM’s performance does not rely on the coverage of the sequencing reads. MTM was also compared with Hammer and Quake, the best methods for correcting non-uniform and uniform data respectively. For non-uniform data, MTM outperformed both Hammer and Quake. For uniform data, MTM showed better performance than Quake and comparable results to Hammer. By making better error correction with MTM, the quality of downstream analysis, such as mapping and SNP detection, was improved. SNP calling is a major application of NGS technologies. However, the existence of sequencing errors complicates this process, especially for the low coverage (

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This investigation compares two different methodologies for calculating the national cost of epilepsy: provider-based survey method (PBSM) and the patient-based medical charts and billing method (PBMC&BM). The PBSM uses the National Hospital Discharge Survey (NHDS), the National Hospital Ambulatory Medical Care Survey (NHAMCS) and the National Ambulatory Medical Care Survey (NAMCS) as the sources of utilization. The PBMC&BM uses patient data, charts and billings, to determine utilization rates for specific components of hospital, physician and drug prescriptions. ^ The 1995 hospital and physician cost of epilepsy is estimated to be $722 million using the PBSM and $1,058 million using the PBMC&BM. The difference of $336 million results from $136 million difference in utilization and $200 million difference in unit cost. ^ Utilization. The utilization difference of $136 million is composed of an inpatient variation of $129 million, $100 million hospital and $29 million physician, and an ambulatory variation of $7 million. The $100 million hospital variance is attributed to inclusion of febrile seizures in the PBSM, $−79 million, and the exclusion of admissions attributed to epilepsy, $179 million. The former suggests that the diagnostic codes used in the NHDS may not properly match the current definition of epilepsy as used in the PBMC&BM. The latter suggests NHDS errors in the attribution of an admission to the principal diagnosis. ^ The $29 million variance in inpatient physician utilization is the result of different per-day-of-care physician visit rates, 1.3 for the PBMC&BM versus 1.0 for the PBSM. The absence of visit frequency measures in the NHDS affects the internal validity of the PBSM estimate and requires the investigator to make conservative assumptions. ^ The remaining ambulatory resource utilization variance is $7 million. Of this amount, $22 million is the result of an underestimate of ancillaries in the NHAMCS and NAMCS extrapolations using the patient visit weight. ^ Unit cost. The resource cost variation is $200 million, inpatient is $22 million and ambulatory is $178 million. The inpatient variation of $22 million is composed of $19 million in hospital per day rates, due to a higher cost per day in the PBMC&BM, and $3 million in physician visit rates, due to a higher cost per visit in the PBMC&BM. ^ The ambulatory cost variance is $178 million, composed of higher per-physician-visit costs of $97 million and higher per-ancillary costs of $81 million. Both are attributed to the PBMC&BM's precise identification of resource utilization that permits accurate valuation. ^ Conclusion. Both methods have specific limitations. The PBSM strengths are its sample designs that lead to nationally representative estimates and permit statistical point and confidence interval estimation for the nation for certain variables under investigation. However, the findings of this investigation suggest the internal validity of the estimates derived is questionable and important additional information required to precisely estimate the cost of an illness is absent. ^ The PBMC&BM is a superior method in identifying resources utilized in the physician encounter with the patient permitting more accurate valuation. However, the PBMC&BM does not have the statistical reliability of the PBSM; it relies on synthesized national prevalence estimates to extrapolate a national cost estimate. While precision is important, the ability to generalize to the nation may be limited due to the small number of patients that are followed. ^