17 resultados para Mammary gland and metabolism
Resumo:
Objective: The objective of this study is to investigate the association between processed and unprocessed red meat consumption and prostate cancer (PCa) stage in a homogenous Mexican-American population. Methods: This population-based case-control study had a total of 582 participants (287 cases with histologically confirmed adenocarcinoma of the prostate gland and 295 age and ethnicity-matched controls) that were all residing in the Southeast region of Texas from 1998 to 2006. All questionnaire information was collected using a validated data collection instrument. Statistical Analysis: Descriptive analyses included Student's t-test and Pearson's Chi-square tests. Odds ratios and 95% confidence intervals were calculated to quantify the association between nutritional factors and PCa stage. A multivariable model was used for unconditional logistic regression. Results: After adjusting for relevant covariates, those who consume high amounts of processed red meat have a non-significant increased odds of being diagnosed with localized PCa (OR = 1.60 95% CI: 0.85 - 3.03) and total PCa (OR = 1.43 95% CI: 0.81 - 2.52) but not for advanced PCa (OR = 0.91 95% CI: 1.37 - 2.23). Interestingly, high consumption of carbohydrates shows a significant reduction in the odds of being diagnosed with total PCa and advanced PCa (OR = 0.43 95% CI: 0.24 - 0.77; OR = 0.27 95% CI: 0.10 - 0.71, respectively). However, consuming high amounts of energy from protein and fat was shown to increase the odds of being diagnosed with advanced PCa (OR = 4.62 95% CI: 1.69 - 12.59; OR = 2.61 95% CI: 1.04 - 6.58, respectively). Conclusion: Mexican-Americans who consume high amounts of energy from protein and fat had increased odds of being diagnosed with advanced PCa, while high amounts of carbohydrates reduced the odds of being diagnosed with total and advanced PCa.^
Resumo:
Metabolic reprogramming has been shown to be a major cancer hallmark providing tumor cells with significant advantages for survival, proliferation, growth, metastasis and resistance against anti-cancer therapies. Glycolysis, glutaminolysis and mitochondrial biogenesis are among the most essential cancer metabolic alterations because these pathways provide cancer cells with not only energy but also crucial metabolites to support large-scale biosynthesis, rapid proliferation and tumorigenesis. In this study, we find that 14-3-3σ suppresses all these three metabolic processes by promoting the degradation of their main driver, c-Myc. In fact, 14-3-3s significantly enhances c-Myc poly-ubiquitination and subsequent degradation, reduces c-Myc transcriptional activity, and down-regulates c-Myc-induced metabolic target genes expression. Therefore, 14-3-3σ remarkably blocks glycolysis, decreases glutaminolysis and diminishes mitochondrial mass of cancer cells both in vitro and in vivo, thereby severely suppressing cancer bioenergetics and metabolism. As a result, a high level of 14-3-3σ in tumors is strongly associated with increased breast cancer patients’ overall and metastasis-free survival as well as better clinical outcomes. Thus, this study reveals a new role for 14-3-3s as a significant regulator of cancer bioenergetics and a promising target for the development of anti-cancer metabolism therapies.