33 resultados para Mammalian Spinal-cord


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pneumonia is a well-documented and common respiratory infection in patients with acute traumatic spinal cord injuries, and may recur during the course of acute care. Using data from the North American Clinical Trials Network (NACTN) for Spinal Cord Injury, the incidence, timing, and recurrence of pneumonia were analyzed. The two main objectives were (1) to investigate the time and potential risk factors for the first occurrence of pneumonia using the Cox Proportional Hazards model, and (2) to investigate pneumonia recurrence and its risk factors using a Counting Process model that is a generalization of the Cox Proportional Hazards model. The results from survival analysis suggested that surgery, intubation, American Spinal Injury Association (ASIA) grade, direct admission to a NACTN site and age (older than 65 or not) were significant risks for first event of pneumonia and multiple events of pneumonia. The significance of this research is that it has the potential to identify patients at the time of admission who are at high risk for the incidence and recurrence of pneumonia. Knowledge and the time of occurrence of pneumonias are important factors for the development of prevention strategies and may also provide some insights into the selection of emerging therapies that compromise the immune system. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Patients living with a spinal cord injury (SCI) often develop chronic neuropathic pain (CNP). Unfortunately, the clinically approved, current standard of treatment, gabapentin, only provides temporary pain relief. This treatment can cause numerous adverse side effects that negatively affect the daily lives of SCI patients. There is a great need for alternative, effective treatments for SCI-dependent CNP. Minocycline, an FDA-approved antibiotic, has been widely prescribed for the treatment of acne for several decades. However, recent studies demonstrate that minocycline has neuroprotective properties in several pre-clinical rodent models of CNS trauma and disease. Pre-clinical studies also show that short-term minocycline treatment can prevent the onset of CNP when delivered during the acute stage of SCI and can also transiently attenuate established CNP when delivered briefly during the chronic stage of SCI. However, the potential to abolish or attenuate CNP via long-term administration of minocycline after SCI is unknown. The purpose of this study was to investigate the potential efficacy and safety of long-term administration of minocycline to abolish or attenuate CNP following SCI. A severe spinal contusion injury was administered on adult, male, Sprague-Dawley rats. At day 29 post-injury, I initiated a three-week treatment regimen of daily administration with minocycline (50 mg/kg), gabapentin (50 mg/kg) or saline. The minocycline treatment group demonstrated a significant reduction in below-level mechanical allodynia and above- level hyperalgesia while on their treatment regimen. After a ten-day washout period of minocycline, the animals continued to demonstrate a significant reduction in below-level mechanical allodynia and above-level hyperalgesia. However, minocycline-treated animals exhibited abnormal weight gain and hepatotoxicity compared to gapabentin-treated or vehicle-treated subjects.The results support previous findings that minocycline can attenuate CNP after SCI and suggested that minocycline can also attenuate CNP via long-term delivery of minocycline after SCI (36). The data also suggested that minocycline had a lasting effect at reducing pain symptoms. However, the adverse side effects of long-term use of minocycline should not be ignored in the rodent model. Gabapentin treatment caused a significant decrease in below-level mechanical allodynia and below-level hyperalgesia during the treatment regimen. Because gabapentin treatment has an analgesic effect at the concentration I administered, the results were expected. However, I also found that gabapentin-treated animals demonstrated a sustained reduction in pain ten days after treatment withdrawal. This result was unexpected because gabapentin has a short half-life of 1.7 hours in rodents and previous studies have demonstrated that pre-drug pain levels return shortly after withdrawal of treatment. Additionally, the gabapentin-treated animals demonstrated a significant and sustained increase in rearing events compared with all other treatment groups which suggested that gabapentin treatment was not only capable of reducing pain long-term but may also significantly improve trunk stability or improve motor function recovery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over 1.2 million Americans are currently living with a traumatic spinal cord injury (SCI). Despite the need for effective therapies, there are currently no proven effective treatments that can improve recovery of function in SCI patients. Many therapeutic compounds have shown promise in preclinical models of SCI, but all of these have fallen short in clinical trials. P-glycoprotein (Pgp) is an active transporter expressed on capillary endothelial cell membranes at the blood-spinal cord barrier (BSCB). Pgp limits passive diffusion of blood-borne drugs into the CNS, by actively extruding drugs from the endothelial cell membrane. Pgp can become pathologically up-regulated, thus greatly impeding therapeutic drug delivery (‘multidrug resistance’). Importantly, many drugs that have been evaluated for the treatment of SCI are Pgp substrates. We hypothesized that Pgp-mediated drug resistance diminishes the delivery and efficacy of neuroprotective drugs following SCI. We observed a progressive, spatial spread of Pgp overexpression within the injured spinal cord. To assess Pgp function, we examined spinal cord uptake of systemically-delivered riluzole, a drug that is currently being evaluated in clinical trials as an SCI intervention. Blood-to-spinal cord riluzole penetration was reduced following SCI in wild-type but not Pgp-null rats, highlighting a critical role for Pgp in mediating spinal cord drug resistance after injury. Others have shown that pro-inflammatory signaling drives Pgp up-regulation in cancer and epilepsy. We have detected inflammation in both acutely- and chronically-injured spinal cord tissue. We therefore evaluated the ability of the dual COX-/5-LOX inhibitor licofelone to attenuate Pgp-mediated drug resistance following SCI. Licofelone treatment both reduced spinal cord Pgp levels and enhanced spinal cord riluzole bioavailability following SCI. Thus, we propose that licofelone may offer a new combinatorial treatment strategy to enhance spinal cord drug delivery following SCI. Additionally, we assessed the ability of licofelone, riluzole, or both to enhance recovery of locomotor function following SCI. We found that licofelone treatment conferred a significant improvement in hindlimb function that was sustained through the end of the study. In contrast, riluzole did not improve functional outcome. We therefore conclude that licofelone holds promise as a potential neuroprotective intervention for SCI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A majority of persons who have sustained spinal cord injury (SCI) develop chronic pain. While most investigators have assumed that the critical mechanisms underlying neuropathic pain after SCI are restricted to the central nervous system (CNS), recent studies showed that contusive SCI results in a large increase in spontaneous activity in primary nociceptors, which is correlated significantly with mechanical allodynia and thermal hyperalgesia. Upregulation of ion channel transient receptor vanilloid 1 (TRPV1) has been observed in the dorsal horn of the spinal cord after SCI, and reduction of SCI-induced hyperalgesia by a TRPV1 antagonist has been claimed. However, the possibility that SCI enhances TRPV1 expression and function in nociceptors has not been tested. I produced contusive SCI at thoracic level T10 in adult, male rats and harvested lumbar (L4/L5) dorsal root ganglia (DRG) from sham-treated and SCI rats 3 days and 1 month after injury, as well as from age-matched naive control rats. Whole-cell patch clamp recordings were made from small (soma diameter <30 >μm) DRG neurons 18 hours after dissociation. Capsaicin-induced currents were significantly increased 1 month, but not 3 days, after SCI compared to neurons from control animals. In addition, Ca2+ transients imaged during capsaicin application were significantly greater 1 month after SCI. Western blot experiments indicated that expression of TRPV1 protein in DRG is also increased 1 month after SCI. A major role for TRPV1 channels in pain-related behavior was indicated by the ability of a specific TRPV1 antagonist, AMG9810, to reverse SCI-induced hypersensitivity of hindlimb withdrawal responses to heat and mechanical stimuli. Similar reversal of behavioral hypersensitivity was induced by intrathecal delivery of oligodeoxynucleotides antisense to TRPV1, which knocked down TRPV1 protein and reduced capsaicin-evoked currents. TRPV1 knockdown also decreased the incidence of spontaneous activity in dissociated nociceptors after SCI. Limited activation of TRPV1 was found to induce prolonged repetitive firing without accommodation or desensitization, and this effect was enhanced by SCI. These data suggest that SCI enhances TRPV1 expression and function in primary nociceptors, increasing the excitability and spontaneous activity of these neurons, thus contributing to chronic pain after SCI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of this study was to determine the external validity of a clinical prediction rule developed by the European Multicenter Study on Human Spinal Cord Injury (EM-SCI) to predict the ambulation outcomes 12 months after traumatic spinal cord injury. Data from the North American Clinical Trials Network (NACTN) data registry with approximately 500 SCI cases were used for this validity study. The predictive accuracy of the EM-SCI prognostic model was evaluated using calibration and discrimination based on 231 NACTN cases. The area under the receiver-operating-characteristics curve (ROC) curve was 0.927 (95% CI 0.894 – 0.959) for the EM-SCI model when applied to NACTN population. This is lower than the AUC of 0.956 (95% CI 0.936 – 0.976) reported for the EM-SCI population, but suggests that the EM-SCI clinical prediction rule distinguished well between those patients in the NACTN population who were able to achieve independent ambulation and those who did not achieve independent ambulation. The calibration curve suggests that higher the prediction score is, the better the probability of walking with the best prediction for AIS D patients. In conclusion, the EM-SCI clinical prediction rule was determined to be generalizable to the adult NACTN SCI population.^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Acute central nervous system (CNS) injuries such as spinal cord injury, traumatic brain injury, autoimmune encephalomyelitis, and ischemic stroke are associated with significant morbidity, mortality, and health care costs worldwide. Preliminary research has shown potential neuroprotection associated with adult tissue derived stem/progenitor cell based therapies. While initial research indicated that engraftment and transdifferentiation into neural cells could explain the observed benefit, the exact mechanism remains controversial. A second hypothesis details localized stem/progenitor cell engraftment with alteration of the loco-regional milieu; however, the limited rate of cell engraftment makes this theory less likely. There is a growing amount of preclinical data supporting the idea that, after intravenous injection, stem/progenitor cells interact with immunologic cells located in organ systems distant to the CNS, thereby altering the systemic immunologic/inflammatory response. Such distant cell "bioreactors" could modulate the observed post-injury pro-inflammatory environment and lead to neuroprotection. In this review, we discuss the current literature detailing the above mechanisms of action for adult stem/progenitor cell based therapies in the CNS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Proton magnetic resonance spectroscopy ((1)H-MRS) provides tissue metabolic information in vivo. This article reviews the role of MRS-determined metabolic alterations in lesions, normal-appearing white matter, gray matter, and spinal cord in advancing our knowledge of pathologic changes in multiple sclerosis (MS). In addition, the role of MRS in objectively evaluating therapeutic efficacy is reviewed. This potential metabolic information makes MRS a unique tool to follow MS disease evolution, understand its pathogenesis, evaluate the disease severity, establish a prognosis, and objectively evaluate the efficacy of therapeutic interventions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE: The present study defines genomic loci underlying coordinate changes in gene expression following retinal injury. METHODS: A group of acute phase genes expressed in diverse nervous system tissues was defined by combining microarray results from injury studies from rat retina, brain, and spinal cord. Genomic loci regulating the brain expression of acute phase genes were identified using a panel of BXD recombinant inbred (RI) mouse strains. Candidate upstream regulators within a locus were defined using single nucleotide polymorphism databases and promoter motif databases. RESULTS: The acute phase response of rat retina, brain, and spinal cord was dominated by transcription factors. Three genomic loci control transcript expression of acute phase genes in brains of BXD RI mouse strains. One locus was identified on chromosome 12 and was highly correlated with the expression of classic acute phase genes. Within the locus we identified the inhibitor of DNA binding 2 (Id2) as a candidate upstream regulator. Id2 was upregulated as an acute phase transcript in injury models of rat retina, brain, and spinal cord. CONCLUSIONS: We defined a group of transcriptional changes associated with the retinal acute injury response. Using genetic linkage analysis of natural transcript variation, we identified regulatory loci and candidate regulators that control transcript levels of acute phase genes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The cellular form of the prion protein (PrP(c)) is necessary for the development of prion diseases and is a highly conserved protein that may play a role in neuroprotection. PrP(c) is found in both blood and cerebrospinal fluid and is likely produced by both peripheral tissues and the central nervous system (CNS). Exchange of PrP(c) between the brain and peripheral tissues could have important pathophysiologic and therapeutic implications, but it is unknown whether PrP(c) can cross the blood-brain barrier (BBB). Here, we found that radioactively labeled PrP(c) crossed the BBB in both the brain-to-blood and blood-to-brain directions. PrP(c) was enzymatically stable in blood and in brain, was cleared by liver and kidney, and was sequestered by spleen and the cervical lymph nodes. Circulating PrP(c) entered all regions of the CNS, but uptake by the lumbar and cervical spinal cord, hypothalamus, thalamus, and striatum was particularly high. These results show that PrP(c) has bidirectional, saturable transport across the BBB and selectively targets some CNS regions. Such transport may play a role in PrP(c) function and prion replication.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Isolated cerebral folate deficiency was detected in a 13-year-old girl with cognitive and motor difficulties and juvenile rheumatoid arthritis. Her serum contains autoantibodies that block membrane-bound folate receptors that are on the choroid plexus and diminish the uptake of folate into the spinal fluid. Whereas her serum folate exceeded 21 ng/mL, her spinal fluid contained 3.2 ng/mL of 5-methyltetrahydrofolate as a consequence of the autoantibodies diminishing the uptake of this folate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Renal failure after thoracoabdominal aortic repair is a significant clinical problem. Distal aortic perfusion for organ and spinal cord protection requires cannulation of the left femoral artery. In 2006, we reported the finding that direct cannulation led to leg ischemia in some patients and was associated with increased renal failure. After this finding, we modified our perfusion technique to eliminate leg ischemia from cannulation. In this article, we present the effects of this change on postoperative renal function. METHODS: Between February 1991 and July 2008, we repaired 1464 thoracoabdominal aortic aneurysms. Distal aortic perfusion was used in 1088, and these were studied. Median patient age was 68 years, and 378 (35%) were women. In September 2006, we began to adopt a sidearm femoral cannulation technique that provides distal aortic perfusion while maintaining downstream flow to the leg. This was used in 167 patients (15%). We measured the joint effects of preoperative glomerular filtration rate (GFR) and cannulation technique on the highest postoperative creatinine level, postoperative renal failure, and death. Analysis was by multiple linear or logistic regression with interaction. RESULTS: The preoperative GFR was the strongest predictor of postoperative renal dysfunction and death. No significant main effects of sidearm cannulation were noted. For peak creatinine level and postoperative renal failure, however, strong interactions between preoperative GFR and sidearm cannulation were present, resulting in reductions of postoperative renal complications of 15% to 20% when GFR was <60 mL>/min/1.73 m(2). For normal GFR, the effect was negated or even reversed at very high levels of GFR. Mortality, although not significantly affected by sidearm cannulation, showed a similar trend to the renal outcomes. CONCLUSION: Use of sidearm cannulation is associated with a clinically important and highly statistically significant reduction in postoperative renal complications in patients with a low GFR. Reduced renal effect of skeletal muscle ischemia is the proposed mechanism. Effects among patients with good preoperative renal function are less clear. A randomized trial is needed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: To evaluate normal tissue dose reduction in step-and-shoot intensity-modulated radiation therapy (IMRT) on the Varian 2100 platform by tracking the multileaf collimator (MLC) apertures with the accelerator jaws. Methods: Clinical radiation treatment plans for 10 thoracic, 3 pediatric and 3 head and neck patients were converted to plans with the jaws tracking each segment’s MLC apertures. Each segment was then renormalized to account for the change in collimator scatter to obtain target coverage within 1% of that in the original plan. The new plans were compared to the original plans in a commercial radiation treatment planning system (TPS). Reduction in normal tissue dose was evaluated in the new plan by using the parameters V5, V10, and V20 in the cumulative dose-volume histogram for the following structures: total lung minus GTV (gross target volume), heart, esophagus, spinal cord, liver, parotids, and brainstem. In order to validate the accuracy of our beam model, MLC transmission measurements were made and compared to those predicted by the TPS. Results: The greatest change between the original plan and new plan occurred at lower dose levels. The reduction in V20 was never more than 6.3% and was typically less than 1% for all patients. The reduction in V5 was 16.7% maximum and was typically less than 3% for all patients. The variation in normal tissue dose reduction was not predictable, and we found no clear parameters that indicated which patients would benefit most from jaw tracking. Our TPS model of MLC transmission agreed with measurements with absolute transmission differences of less than 0.1 % and thus uncertainties in the model did not contribute significantly to the uncertainty in the dose determination. Conclusion: The amount of dose reduction achieved by collimating the jaws around each MLC aperture in step-and-shoot IMRT does not appear to be clinically significant.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PAX6, a member of the paired-type homeobox gene family, is expressed in a partially and temporally restricted pattern in the developing central nervous system, and its mutation is responsible for human aniridia (AN) and mouse small eye (Sey). The objective of this study was to characterize the PAX6 gene regulation at the transcriptional level, and thereby gain a better understanding of the molecular basis of the dynamic expression pattern and the diversified function of the human PAX6 gene.^ Initially, we examined the transcriptional regulation of the PAX6 gene by transient transfection assays and identified multiple cis-regulatory elements that function differently in different cell lines. The transcriptional initiation site was identified by RNase protection and primer extension assays. Examination of the genomic DNA sequence indicated that the PAX6 promoter has a TATA like-box (ATATTTT) at $-$26 bp, and two CCAAT-boxes are located at positions $-$70 and $-$100 bp. A 38 bp ply (CA) sequence was located 992 bp upstream from the initiation site. Transient transfection assays in glioblastoma cells and leukemia cells indicate that a 92 bp region was required for basal level PAX6 promoter activity. Gel retardation assays showed that this 92 bp sequence can form four DNA-protein complexes which can be specifically competed by a 31-mer oligonucleotide containing a PAX6 TATA-like sequence or an adenovirus TATA box. The activation of the promoter is positively correlated with the expression of PAX6 transcripts in cells tested.^ Based on the results obtained from the in vitro transfection assays, we did further dissection assay and functional analysis in both cell-culture and transgenic mice. We found that a 5 kb upstream promoter sequence is required for the tissue specific expression in the forebrain region which is consistent with that of the endogenous PAX6 gene. A 267 bp cell-type specific repressor located within the 5 kb fragment was identified and shown to direct forebrain specific expression. The cell-type specific repressor element has been narrowed to a 30 bp region which contains a consensus E-box by in vitro transfection assays. The third regulatory element identified was contained in a 162 bp sequence (+167 to +328) which functions as a midbrain repressor, and it appeared to be required for establishing the normal expression pattern of the PAX6 gene. Finally, a highly conserved 216 bp sequence identified in intron 4 exhibited as a spinal cord specific enhancer. And this 216 bp cis-regulatory element can be used as a marker to trace the differentiation and migration of progenitor cells in the developing spinal cord. These studies show that the concerted action of multiple cis-acting regulatory elements located upstream and downstream of the transcription initiation site determines the tissue specific expression of PAX6 gene. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neural tube defects (NTDs) are malformations of the developing brain and spinal cord; the most common are anencephaly and spina bifida. Evidence from many populations suggests that 50% of NTDs can be prevented through daily consumption of folic acid. A recent study has reported that folic acid may not protect populations of Mexican descent. This finding has serious implications for women living along the US-Mexico border. Not only is risk high in these Mexican American women compared with other US women; they also differ markedly in supplemental folic acid and dietary folate consumption, and in NTD-related risks (e.g., obesity, diabetes). This case-control study investigated whether folic acid supplements and dietary folate reduces NTDs in Mexican Americans. Cases included liveborn, stillborn, electively and spontaneously aborted NTD-affected fetuses and infants occurring in the 14-county Texas-Mexico border. Controls were randomly selected from unaffected live births, frequency matched to cases by hospital and year. An in-person interview of 110 case and 113 control mothers solicited data on folic acid supplements, dietary folate, and other covariates. Consumption of folic acid-containing vitamins before conception was only 5% for both case and control women. Taking vitamins the trimester before conception had no apparent effect, after adjusting for covariates [odds ratio (OR) = 1.0, 95% confidence interval (CI) = 0.3–3.4]. Combining folate from vitamins and diet showed a 20% risk reduction for women consuming at least 400 μg of folate daily [OR = 0.8, 95% CI = 0.5–1.5]; however, this estimate is statistically indistinguishable from the null. Although consistent with an inherent ineffectiveness of supplemental folic acid, that so few women consumed multivitamins during the critical time severely limited the assessment of folic acid in this population. A reduced folate response in Mexican descent women may be due to a genetic heterogeneity for metabolizing folate. Alternatively, folate intakes may be insufficient to overcome other underlying risk factors. In conclusion, determining whether folic acid reduces NTD risk in Mexican American women requires further study in populations with higher folic acid exposures. Meanwhile, we should pursue all recommended prevention strategies to reduce risk, including motivating Mexican American women of childbearing age to take folic acid routinely. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This dissertation describes an ascending serotonergic pain modulation system projecting from the dorsal raphe (DR) nucleus of the midbrain to the parafascicularis (PF) nucleus of the thalamus. Previous studies by other investigators have led to the hypothesis that the DR would modulate responses to noxious stimuli in the PF by using 5HT. These other studies have shown that the DR contains serotonergic (5HT) cell bodies which project to many areas of the forebrain including the PF, that the PF is involved in pain perception, that electrical stimulation of the DR causes analgesia, and 5HT is necessary for this type of analgesia. One theory of the mechanisms of an endogenous pain modulation system is that brainstem nuclei have a decsending projection to the spinal cord to inhibit responses to noxious input at this level. The present study tests the hypothesis that there is also an ascending pain modulation pathway from the brainstem to the thalamus.^ To test this hypothesis, several types of experiments were performed on anesthetised rats. The major results of the experiments are as follows: (1) Three types of spontaneously active PF neurons were found: slow units firing at 1-10 spikes/sec, bursting units firing 2-5 times in 10-20 msec, pattern repeating every 1-2 sec, and fast units firing at 15-40 spikes/sec. The first two groups showed similar results to the treatments and were analysed together. The fast firing units did not respond to any of the treatments. (2) Noxious stimuli primarily increased neuronal firing rates in the PF, where as DR stimulation primarily decreased neuronal activity. DR stimulation applied simultaneously with noxious stimuli decreased the responses to the noxious stimuli as recorded in the PF units. (3) Microiontophoretically applied 5HT in the PF decreased spontaneous activity in the PF in a dose dependent manner and decreases responses to noxious stimuli in the PF. (4) Reduction of brain 5HT by 5,7 dihydroxytryptamine, a potent 5HT neurotoxin, caused PF units to be hypersensitive to both noxious and non noxious stimuli, reversed the effects of DR stimulation so that DR stimulation increased single units activity in the PF, and prolonged and intensified the depressant action of microiontophoretically applied 5HT. The results of this study are consistent with the hypothesis that the DR uses 5HT in a direct ascending pathway to the PF to modulate pain in the thalamus. ^