21 resultados para Malignant biliary obstruction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic exposure of the airways to cigarette smoke induces inflammatory response and genomic instability that play important roles in lung cancer development. Nuclear factor kappa B (NF-κB), the major intracellular mediator of inflammatory signals, is frequently activated in preneoplastic and malignant lung lesions. ^ Previously, we had shown that a lung tumor suppressor GPRC5A is frequently repressed in human non-small cell lung cancers (NSCLC) cells and lung tumor specimens. Recently, other groups have shown that human GPRC5A transcript levels are higher in bronchial samples of former than of current smokers. These results suggested that smoking represses GPRC5A expression and thus promotes the occurrence of lung cancer. We hypothesized that cigarette smoking or associated inflammatory response repressed GPRC5A expression through NF-κB signaling. ^ To determine the effect of inflammation, we examined GPRC5A protein expression in several lung cell lines following by TNF-α treatment. TNF-α significantly suppressed GPRC5A expression in normal small airway epithelial cells (SAEC) as well as in Calu-1 cells. Real-time PCR analysis indicated that TNF-α inhibits GPRC5A expression at the transcriptional level. NF-κB, the major downstream effectors of TNF-α signaling, mediates TNF-α-induced repression of GPRC5A because over-expression of NF-κB suppressed GPRC5A. To determine the region in the GPRC5A promoter through which NF-κB acts, we examined the ability of TNF-α to inhibit a series of reporter constructs with different deletions of GPRC5A promoter. The luciferase assay showed that the potential NF-κB binding sites containing region are irresponsible for TNF-α-induced suppression. Further analysis using constructs with different deletions in p65 revealed that NF-κB-mediated repression of GPRC5A is transcription-independent. Co-immunoprecipitation assays revealed that NF-κB could form a complex with RAR/RXR heterodimer. Moreover, the inhibitory effect of NF-κB has been found to be proportional to NF-κB/RAR ratio in luciferase assay. Finally, Chromatin IP demonstrated that NF-κB/p65 bound to GPRC5A promoter as well as RAR/RXR and suppressed transcription. Taken together, we propose that inflammation-induced NF-κB activation disrupts the RA signaling and suppresses GPRC5A expression and thus contributes to the oncogenesis of lung cancer. Our studies shed new light on the pathogenesis of lung cancer and potentially provide novel interventions for preventing and treating this disease. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genome-wide association studies (GWAS) have successfully identified several genetic loci associated with inherited predisposition to primary biliary cirrhosis (PBC), the most common autoimmune disease of the liver. Pathway-based tests constitute a novel paradigm for GWAS analysis. By evaluating genetic variation across a biological pathway (gene set), these tests have the potential to determine the collective impact of variants with subtle effects that are individually too weak to be detected in traditional single variant GWAS analysis. To identify biological pathways associated with the risk of development of PBC, GWAS of PBC from Italy (449 cases and 940 controls) and Canada (530 cases and 398 controls) were independently analyzed. The linear combination test (LCT), a recently developed pathway-level statistical method was used for this analysis. For additional validation, pathways that were replicated at the P <0.05 level of significance in both GWAS on LCT analysis were also tested for association with PBC in each dataset using two complementary GWAS pathway approaches. The complementary approaches included a modification of the gene set enrichment analysis algorithm (i-GSEA4GWAS) and Fisher's exact test for pathway enrichment ratios. Twenty-five pathways were associated with PBC risk on LCT analysis in the Italian dataset at P<0.05, of which eight had an FDR<0.25. The top pathway in the Italian dataset was the TNF/stress related signaling pathway (p=7.38×10 -4, FDR=0.18). Twenty-six pathways were associated with PBC at the P<0.05 level using the LCT in the Canadian dataset with the regulation and function of ChREBP in liver pathway (p=5.68×10-4, FDR=0.285) emerging as the most significant pathway. Two pathways, phosphatidylinositol signaling system (Italian: p=0.016, FDR=0.436; Canadian: p=0.034, FDR=0.693) and hedgehog signaling (Italian: p=0.044, FDR=0.636; Canadian: p=0.041, FDR=0.693), were replicated at LCT P<0.05 in both datasets. Statistically significant association of both pathways with PBC genetic susceptibility was confirmed in the Italian dataset on i-GSEA4GWAS. Results for the phosphatidylinositol signaling system were also significant in both datasets on applying Fisher's exact test for pathway enrichment ratios. This study identified a combination of known and novel pathway-level associations with PBC risk. If functionally validated, the findings may yield fresh insights into the etiology of this complex autoimmune disease with possible preventive and therapeutic application.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ECM of epithelial carcinomas undergoes structural remodeling during periods of uncontrolled growth, creating regional heterogeneity and torsional stress. How tumors maintain ECM integrity in the face of dynamic biophysical forces is still largely unclear. This study addresses these deficiencies using mouse models of human lung adenocarcinoma. Spontaneous lung tumors were marked by disorganized basement membranes, dense collagen networks, and increased tissue stiffness. Metastasis-prone lung adenocarcinoma cells secreted fibulin-2 (Fbln2), a matrix glycoprotein involved in ECM supra-molecular assembly. Fibulin-2 depletion in tumor cells decreased the intra-tumoral abundance of matrix metalloproteinases and reduced collagen cross-linking and tumor compressive properties resulting in inhibited tumor growth and metastasis. Fbln2 deposition within intra-tumoral fibrotic bands was a predictor of poor clinical outcome in patients. Collectively, these findings support a feed-forward model in which tumor cells secrete matrix-stabilizing factors required for the assembly of ECM that preferentially favors malignant progression. To our knowledge, this is the first evidence that tumor cells directly regulate the integrity of their surrounding matrix through the secretion of matrix-stabilizing factors such as fibulin-2. These findings open a new avenue of research into matrix assembly molecules as potential therapeutic targets in cancer patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Left ventricular outflow tract (LVOT) defects are an important group of congenital heart defects (CHDs) because of their associated mortality and long-term complications. LVOT defects include aortic valve stenosis (AVS), coarctation of aorta (CoA), and hypoplastic left heart syndrome (HLHS). Despite their clinical significance, their etiology is not completely understood. Even though the individual component phenotypes (AVS, CoA, and HLHS) may have different etiologies, they are often "lumped" together in epidemiological studies. Though "lumping" of component phenotypes may improve the power to detect associations, it may also lead to ambiguous findings if these defects are etiologically distinct. This is due to potential for effect heterogeneity across component phenotypes. ^ This study had two aims: (1) to identify the association between various risk factors and both the component (i.e., split) and composite (i.e., lumped) LVOT phenotypes, and (2) to assess the effect heterogeneity of risk factors across component phenotypes of LVOT defects. ^ This study was a secondary data analysis. Primary data were obtained from the Texas Birth Defect Registry (TBDR). TBDR uses an active surveillance method to ascertain birth defects in Texas. All cases of non complex LVOT defects which met our inclusion criteria during the period of 2002–2008 were included in the study. The comparison groups included all unaffected live births for the same period (2002–2008). Data from vital statistics were used to evaluate associations. Statistical associations between selected risk factors and LVOT defects was determined by calculating crude and adjusted prevalence ratio using Poisson regression analysis. Effect heterogeneity was evaluated using polytomous logistic regression. ^ There were a total of 2,353 cases of LVOT defects among 2,730,035 live births during the study period. There were a total of 1,311 definite cases of non-complex LVOT defects for analysis after excluding "complex" cardiac cases and cases associated with syndromes (n=168). Among infant characteristics, males were at a significantly higher risk of developing LVOT defects compared to females. Among maternal characteristics, significant associations were seen with maternal age > 40 years (compared to maternal age 20–24 years) and maternal residence in Texas-Mexico border (compared to non-border residence). Among birth characteristics, significant associations were seen with preterm birth and small for gestation age LVOT defects. ^ When evaluating effect heterogeneity, the following variables had significantly different effects among the component LVOT defect phenotypes: infant sex, plurality, maternal age, maternal race/ethnicity, and Texas-Mexico border residence. ^ This study found significant associations between various demographic factors and LVOT defects. While many findings from this study were consistent with results from previous studies, we also identified new factors associated with LVOT defects. Additionally, this study was the first to assess effect heterogeneity across LVOT defect component phenotypes. These findings contribute to a growing body of literature on characteristics associated with LVOT defects. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In melanoma patient specimens and cell lines, the over expression of galectin-3 is associated with disease progression and metastatic potential. Herein, we have sought out to determine whether galectin-3 affects the malignant melanoma phenotype by regulating downstream target genes. To that end, galectin-3 was stably silenced by utilizing the lentivirus-incorporated small hairpin RNA in two metastatic melanoma cell lines, WM2664 and A375SM, and subjected to gene expression microarray analysis. We identified and validated the lysophospholipase D enzyme, autotaxin, a promoter of migration, invasion, and tumorigenesis, to be down regulated after silencing galectin-3. Silencing galectin-3 significantly reduced the promoter activity of autotaxin. Interestingly, we also found the transcription factor NFAT1 to have reduced protein expression after silencing galectin-3. Electrophoretic mobility shift assays from previous reports have shown that NFAT1 binds to the autotaxin promoter in two locations. ChIP analysis was performed, and we observed a complete loss of bound NFAT1 to the autotaxin promoter after silencing galectin-3 in melanoma cells. Mutation of the NFAT1 binding sites at either location reduces autotaxin promoter activity. Silencing NFAT1 reduces autotaxin expression while over expressing NFAT1 in NFAT1 negative SB-2 melanoma cells induces autotaxin expression. These data suggest that galectin-3 silencing reduces autotaxin transcription by reducing the amount of NFAT1 protein expression. Rescue of galectin-3 rescues both NFAT1 and autotaxin. We also show that the re-expression of autotaxin in galectin-3 shRNA melanoma cells rescues the angiogenic phenotype in vivo. Furthermore, we identify NFAT1 as a potent inducer of tumor growth and experimental lung metastasis. Our data elucidate a previously unidentified mechanism by which galectin-3 regulates autotaxin and assign a novel role for NFAT1 during melanoma progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colorectal cancer is a leading cause of cancer mortality and early detection can significantly improve the clinical outcome. Most colorectal cancers arise from benign neoplastic lesions recognized as adenomas. Only a small percentage of all adenomas will become malignant. Thus, there is a need to identify specific markers of malignant potential. Studies at the molecular level have demonstrated an accumulation of genetic alterations, some hereditary but for the most occurring in somatic cells. The most common are the activation of ras, an oncogene involved in signal transduction, and the inactivation of p53, a tumor suppressor gene implicated in cell cycle regulation. In this study, 38 carcinomas, 95 adenomas and 20 benign polyps were analyzed by immunohistochemistry for the abnormal expression of p53 and ras proteins. An index of cellular proliferation was also measured by labeling with PCNA. A general overexpression of p53 was immunodetected in 66% of the carcinomas, while 26% of adenomas displayed scattered individual positive cells or a focal high concentration of positive cells. This later was more associated with severe dysplasia. Ras protein was detected in 37% of carcinomas and 32% of adenomas mostly throughout the tissue. p53 immunodetection was more frequent in adenomas originating in colons with synchronous carcinomas, particularly in patients with familial adenomatous polyposis and it may be a useful marker in these cases. Difference in the frequency of p53 and ras alterationbs was related to the location of the neoplasm. Immunodetection of p53 protein was correlated to the presence of a mutation in p53 gene at exon 7 and 5 in 4/6 carcinomas studied and 2 villous adenomas. Thus, we characterized in adenomas the abnormal expression of two proteins encoded by the most commonly altered genes in colorectal cancer. p53 alteration appears to be more specifically associated with transition to malignancy than ras. By using immunohistochemistry, a technique that keeps the architecture of the tissue intact, it was possible to correlate these alterations to histopathological characteristics that were associated with higher risks for transformation: villous content, dysplasia and size of adenoma. ^