28 resultados para Linear mixed effect models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. The Centers for Disease Control and Prevention (CDC), the American Cancer Society (ACS), and the American College of Obstetricians and Gynecologists (ACOG) all recommend the HPV vaccine for girls 11-12. The vaccine has the potential to reduce cervical cancer disparities if it is used by populations that do not participate in screening. Evidence suggests that incidence and mortality are higher among Hispanic women compared to non-Hispanic white women because they do not participate in screening. Past literature has found that acculturation has a mixed effect on cervical cancer screening and immunization. Little is known about whether parental acculturation is associated with adolescent HPV vaccine uptake among Hispanics and the mechanisms through which acculturation may affect vaccine uptake.^ Aims. To examine the association between parental acculturation and adolescent HPV uptake among Hispanics in California and test the structural hypothesis of acculturation by determining if socioeconomic status (SES) and health care access mediate the association between acculturation and HPV vaccine uptake.^ Methods. Cross-sectional data from the 2007 California Health Interview Survey (CHIS) were used for bivariate and multivariate logistic regression analyses. The sample used for analysis included 1,090 Hispanic parents, with a daughter age 11-17, who answered questions about the HPV vaccine. Outcome variable of interest was HPV vaccine uptake (≥1dose). Independent variables of interest were language spoken at home (a proxy variable for acculturation), household income (percent of federal poverty level), education level, and health care access (combined measure of health insurance coverage and usual source of care).^ Results. Parents who spoke only English or English and Spanish in the home were more likely to get the HPV vaccine for their daughter than parents who only spoke Spanish (Odds Ratio [OR]: 0.55, 95% Confidence Interval [CI]: 0.31-0.98). When SES and health care access variables were added to the logistic regression model, the association between language acculturation and HPV vaccine uptake became non-significant (OR: 0.68, 95% CI: 0.35-1.29). Both income and health care access were associated with uptake. Parents with lower income or who did not have insurance and a usual source of care were less likely to have a vaccinated daughter.^ Discussion. Socioeconomic status and health care access have a more proximal effect on HPV vaccine uptake than parental language acculturation among Hispanics in California.^ Conclusion. This study found support for the structural hypothesis of acculturation and suggest that interventions focus on informing low SES parents who lack access to health care about programs that provide free HPV vaccines.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human papillomavirus (HPV) is a necessary cause of cervical cancer and is also strongly associated with anal cancer. While different factors such as CD4+ cell count, HIV RNA viral load, smoking status, and cytological screening results have been identified as risk factors for the infection of HPV high-risk types and associated cancers, much less is known about the association between those risk factors and the infection of HPV low-risk types and anogential warts. In this dissertation, a public dataset (release P09) obtained from the Women's Interagency HIV Study (WIHS) was used to examine the effects of those risk factors on the size of the largest anal warts in HIV-infected women in the United States. Linear mixed modeling was used to address this research question. ^ The prevalence of anal warts at baseline for WIHS participants was higher than other populations. Incidence of anal warts in HIV-infected women was significantly higher than that of HIV-uninfected women [4.15 cases per 100 person-years (95% CI: 3.83–4.77) vs. 1.30 cases per 100 person-years (95% CI: 1.00–1.58), respectively]. There appeared to be an inverse association between the size of the largest anal wart and CD4+ cell count at baseline visit, however it was not statistically significant. There was no association between size of the largest anal wart and CD4+ cell count or HIV RNA viral load over time among HIV-infected women. There was also no association between the size of the largest anal wart and current smoking over time in HIV-infected women, even though smokers had larger warts at baseline than non-smokers. Finally, even though a woman with Pap smear results of ASCUS/LGSIL was found to have an anal wart larger than a woman with normal cervical Pap smear results the relationship between the size of the largest anal wart with cervical Pap smear results over time remains unclear. ^ Although the associations between these risk factors and the size of the largest anal wart over time in HIV-infected women could not be firmly established, this dissertation poses several questions concerning anal wart development for further exploration: (1) the role of immune function (i.e., CD4+ cell count), (2) the role of smoking status and the interaction between smoking status with other risk factors (e.g., CD4+ cell count or HIV RNA viral load), (3) the molecular mechanism of smoking on anal warts over time, (4) the potential for development of a screening program using anal Pap smear in HIV-infected women, and (5) how cost-effective and efficacious would an anal Pap smear screening program be in this high-risk population. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: This observational research study investigated the association of cardiorespiratory fitness and weight status with repeated measures of 24-hr ambulatory blood pressure (24-hr ABP). Little is known about these associations and few data exist examining the interaction between cardiorespiratory fitness and weight status and the contributions of each on 24-hr ABP in youth. ^ METHODS: This research study used secondary analysis data from the "Adolescent Blood Pressure and Anger: Ethnic Differences" study. This current study sample included 374 African-American, Anglo-American, and Mexican-American adolescents 11-16 years of age. Mixed-effects models were used for testing the relationship between weight status and cardiorespiratory fitness and repeated measures of ambulatory blood pressure over 24 hours (24-hr ABP). Weight status was categorized into "normal weight" (BMI<85th percentile), "overweight" (85th≤BMI<95th), and "obese" (BMI≥95th). Cardiorespiratory fitness, determined by heart rate recovery (HRR), was defined as the difference between heart rate at peak exercise and heart rate at two minutes post-exercise, as measured by a height-adjusted step test and stratified into two groups: low and high fitness, using a median split. Ambulatory blood pressure (ABP) was monitored for a 24-hr period on a school day using the Spacelabs ambulatory monitor (Model 90207). Blood pressure and heart rate were recorded at 30 minute intervals throughout the day of recording and at 60 minute intervals during sleep. ^ RESULTS: No significant associations were found between weight status and mean 24-hr systolic blood pressure (SBP) or mean arterial pressure (MAP). A significant and inverse association between weight status and mean 24-hr diastolic blood pressure (DBP) was revealed. Cardiorespiratory fitness was significantly and inversely associated with mean 24-hr ABP. High fitness adolescents had significantly lower mean 24-hr SPB, DBP, and MAP measurements than low fitness adolescents. Compared to low fitness adolescents, high fitness adolescents had 1.90 mmHg, 1.16 mmHg, and 1.68 mmHg lower mean 24-hr SBP, DBP, and MAP, respectively. Additionally, high fitness appeared to afford protection from higher mean 24-hr SBP and MAP, irrespective of weight status. Among normal weight adolescents, low fitness resulted in higher mean 24-hr SBP and MAP, compared to their fit counterparts. Among adolescents categorized as high fitness, increasing weight status did not appear to result in higher mean 24-hr SBP or MAP. Cardiorespiratory fitness, rather than weight status, appeared to be a more dominant predictor of mean 24-hr SBP and MAP. ^ CONCLUSIONS: To our knowledge, this research is the first study to investigate the independent and combined contributions of cardiorespiratory fitness and weight status on 24-hr ABP, all objectively measured. The results of this study may potentially guide and inform future research. It appears that early cardiovascular disease (CVD) prevention should focus on improving cardiorespiratory fitness levels among all adolescents, particularly those adolescents least fit, regardless of their weight status, while obesity prevention efforts continue.^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper reports a comparison of three modeling strategies for the analysis of hospital mortality in a sample of general medicine inpatients in a Department of Veterans Affairs medical center. Logistic regression, a Markov chain model, and longitudinal logistic regression were evaluated on predictive performance as measured by the c-index and on accuracy of expected numbers of deaths compared to observed. The logistic regression used patient information collected at admission; the Markov model was comprised of two absorbing states for discharge and death and three transient states reflecting increasing severity of illness as measured by laboratory data collected during the hospital stay; longitudinal regression employed Generalized Estimating Equations (GEE) to model covariance structure for the repeated binary outcome. Results showed that the logistic regression predicted hospital mortality as well as the alternative methods but was limited in scope of application. The Markov chain provides insights into how day to day changes of illness severity lead to discharge or death. The longitudinal logistic regression showed that increasing illness trajectory is associated with hospital mortality. The conclusion is reached that for standard applications in modeling hospital mortality, logistic regression is adequate, but for new challenges facing health services research today, alternative methods are equally predictive, practical, and can provide new insights. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The use of group-randomized trials is particularly widespread in the evaluation of health care, educational, and screening strategies. Group-randomized trials represent a subset of a larger class of designs often labeled nested, hierarchical, or multilevel and are characterized by the randomization of intact social units or groups, rather than individuals. The application of random effects models to group-randomized trials requires the specification of fixed and random components of the model. The underlying assumption is usually that these random components are normally distributed. This research is intended to determine if the Type I error rate and power are affected when the assumption of normality for the random component representing the group effect is violated. ^ In this study, simulated data are used to examine the Type I error rate, power, bias and mean squared error of the estimates of the fixed effect and the observed intraclass correlation coefficient (ICC) when the random component representing the group effect possess distributions with non-normal characteristics, such as heavy tails or severe skewness. The simulated data are generated with various characteristics (e.g. number of schools per condition, number of students per school, and several within school ICCs) observed in most small, school-based, group-randomized trials. The analysis is carried out using SAS PROC MIXED, Version 6.12, with random effects specified in a random statement and restricted maximum likelihood (REML) estimation specified. The results from the non-normally distributed data are compared to the results obtained from the analysis of data with similar design characteristics but normally distributed random effects. ^ The results suggest that the violation of the normality assumption for the group component by a skewed or heavy-tailed distribution does not appear to influence the estimation of the fixed effect, Type I error, and power. Negative biases were detected when estimating the sample ICC and dramatically increased in magnitude as the true ICC increased. These biases were not as pronounced when the true ICC was within the range observed in most group-randomized trials (i.e. 0.00 to 0.05). The normally distributed group effect also resulted in bias ICC estimates when the true ICC was greater than 0.05. However, this may be a result of higher correlation within the data. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

With the recognition of the importance of evidence-based medicine, there is an emerging need for methods to systematically synthesize available data. Specifically, methods to provide accurate estimates of test characteristics for diagnostic tests are needed to help physicians make better clinical decisions. To provide more flexible approaches for meta-analysis of diagnostic tests, we developed three Bayesian generalized linear models. Two of these models, a bivariate normal and a binomial model, analyzed pairs of sensitivity and specificity values while incorporating the correlation between these two outcome variables. Noninformative independent uniform priors were used for the variance of sensitivity, specificity and correlation. We also applied an inverse Wishart prior to check the sensitivity of the results. The third model was a multinomial model where the test results were modeled as multinomial random variables. All three models can include specific imaging techniques as covariates in order to compare performance. Vague normal priors were assigned to the coefficients of the covariates. The computations were carried out using the 'Bayesian inference using Gibbs sampling' implementation of Markov chain Monte Carlo techniques. We investigated the properties of the three proposed models through extensive simulation studies. We also applied these models to a previously published meta-analysis dataset on cervical cancer as well as to an unpublished melanoma dataset. In general, our findings show that the point estimates of sensitivity and specificity were consistent among Bayesian and frequentist bivariate normal and binomial models. However, in the simulation studies, the estimates of the correlation coefficient from Bayesian bivariate models are not as good as those obtained from frequentist estimation regardless of which prior distribution was used for the covariance matrix. The Bayesian multinomial model consistently underestimated the sensitivity and specificity regardless of the sample size and correlation coefficient. In conclusion, the Bayesian bivariate binomial model provides the most flexible framework for future applications because of its following strengths: (1) it facilitates direct comparison between different tests; (2) it captures the variability in both sensitivity and specificity simultaneously as well as the intercorrelation between the two; and (3) it can be directly applied to sparse data without ad hoc correction. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In recent years, disaster preparedness through assessment of medical and special needs persons (MSNP) has taken a center place in public eye in effect of frequent natural disasters such as hurricanes, storm surge or tsunami due to climate change and increased human activity on our planet. Statistical methods complex survey design and analysis have equally gained significance as a consequence. However, there exist many challenges still, to infer such assessments over the target population for policy level advocacy and implementation. ^ Objective. This study discusses the use of some of the statistical methods for disaster preparedness and medical needs assessment to facilitate local and state governments for its policy level decision making and logistic support to avoid any loss of life and property in future calamities. ^ Methods. In order to obtain precise and unbiased estimates for Medical Special Needs Persons (MSNP) and disaster preparedness for evacuation in Rio Grande Valley (RGV) of Texas, a stratified and cluster-randomized multi-stage sampling design was implemented. US School of Public Health, Brownsville surveyed 3088 households in three counties namely Cameron, Hidalgo, and Willacy. Multiple statistical methods were implemented and estimates were obtained taking into count probability of selection and clustering effects. Statistical methods for data analysis discussed were Multivariate Linear Regression (MLR), Survey Linear Regression (Svy-Reg), Generalized Estimation Equation (GEE) and Multilevel Mixed Models (MLM) all with and without sampling weights. ^ Results. Estimated population for RGV was 1,146,796. There were 51.5% female, 90% Hispanic, 73% married, 56% unemployed and 37% with their personal transport. 40% people attained education up to elementary school, another 42% reaching high school and only 18% went to college. Median household income is less than $15,000/year. MSNP estimated to be 44,196 (3.98%) [95% CI: 39,029; 51,123]. All statistical models are in concordance with MSNP estimates ranging from 44,000 to 48,000. MSNP estimates for statistical methods are: MLR (47,707; 95% CI: 42,462; 52,999), MLR with weights (45,882; 95% CI: 39,792; 51,972), Bootstrap Regression (47,730; 95% CI: 41,629; 53,785), GEE (47,649; 95% CI: 41,629; 53,670), GEE with weights (45,076; 95% CI: 39,029; 51,123), Svy-Reg (44,196; 95% CI: 40,004; 48,390) and MLM (46,513; 95% CI: 39,869; 53,157). ^ Conclusion. RGV is a flood zone, most susceptible to hurricanes and other natural disasters. People in the region are mostly Hispanic, under-educated with least income levels in the U.S. In case of any disaster people in large are incapacitated with only 37% have their personal transport to take care of MSNP. Local and state government’s intervention in terms of planning, preparation and support for evacuation is necessary in any such disaster to avoid loss of precious human life. ^ Key words: Complex Surveys, statistical methods, multilevel models, cluster randomized, sampling weights, raking, survey regression, generalized estimation equations (GEE), random effects, Intracluster correlation coefficient (ICC).^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Interaction effect is an important scientific interest for many areas of research. Common approach for investigating the interaction effect of two continuous covariates on a response variable is through a cross-product term in multiple linear regression. In epidemiological studies, the two-way analysis of variance (ANOVA) type of method has also been utilized to examine the interaction effect by replacing the continuous covariates with their discretized levels. However, the implications of model assumptions of either approach have not been examined and the statistical validation has only focused on the general method, not specifically for the interaction effect.^ In this dissertation, we investigated the validity of both approaches based on the mathematical assumptions for non-skewed data. We showed that linear regression may not be an appropriate model when the interaction effect exists because it implies a highly skewed distribution for the response variable. We also showed that the normality and constant variance assumptions required by ANOVA are not satisfied in the model where the continuous covariates are replaced with their discretized levels. Therefore, naïve application of ANOVA method may lead to an incorrect conclusion. ^ Given the problems identified above, we proposed a novel method modifying from the traditional ANOVA approach to rigorously evaluate the interaction effect. The analytical expression of the interaction effect was derived based on the conditional distribution of the response variable given the discretized continuous covariates. A testing procedure that combines the p-values from each level of the discretized covariates was developed to test the overall significance of the interaction effect. According to the simulation study, the proposed method is more powerful then the least squares regression and the ANOVA method in detecting the interaction effect when data comes from a trivariate normal distribution. The proposed method was applied to a dataset from the National Institute of Neurological Disorders and Stroke (NINDS) tissue plasminogen activator (t-PA) stroke trial, and baseline age-by-weight interaction effect was found significant in predicting the change from baseline in NIHSS at Month-3 among patients received t-PA therapy.^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Complex diseases, such as cancer, are caused by various genetic and environmental factors, and their interactions. Joint analysis of these factors and their interactions would increase the power to detect risk factors but is statistically. Bayesian generalized linear models using student-t prior distributions on coefficients, is a novel method to simultaneously analyze genetic factors, environmental factors, and interactions. I performed simulation studies using three different disease models and demonstrated that the variable selection performance of Bayesian generalized linear models is comparable to that of Bayesian stochastic search variable selection, an improved method for variable selection when compared to standard methods. I further evaluated the variable selection performance of Bayesian generalized linear models using different numbers of candidate covariates and different sample sizes, and provided a guideline for required sample size to achieve a high power of variable selection using Bayesian generalize linear models, considering different scales of number of candidate covariates. ^ Polymorphisms in folate metabolism genes and nutritional factors have been previously associated with lung cancer risk. In this study, I simultaneously analyzed 115 tag SNPs in folate metabolism genes, 14 nutritional factors, and all possible genetic-nutritional interactions from 1239 lung cancer cases and 1692 controls using Bayesian generalized linear models stratified by never, former, and current smoking status. SNPs in MTRR were significantly associated with lung cancer risk across never, former, and current smokers. In never smokers, three SNPs in TYMS and three gene-nutrient interactions, including an interaction between SHMT1 and vitamin B12, an interaction between MTRR and total fat intake, and an interaction between MTR and alcohol use, were also identified as associated with lung cancer risk. These lung cancer risk factors are worthy of further investigation.^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Scholars have found that socioeconomic status was one of the key factors that influenced early-stage lung cancer incidence rates in a variety of regions. This thesis examined the association between median household income and lung cancer incidence rates in Texas counties. A total of 254 individual counties in Texas with corresponding lung cancer incidence rates from 2004 to 2008 and median household incomes in 2006 were collected from the National Cancer Institute Surveillance System. A simple linear model and spatial linear models with two structures, Simultaneous Autoregressive Structure (SAR) and Conditional Autoregressive Structure (CAR), were used to link median household income and lung cancer incidence rates in Texas. The residuals of the spatial linear models were analyzed with Moran's I and Geary's C statistics, and the statistical results were used to detect similar lung cancer incidence rate clusters and disease patterns in Texas.^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

With most clinical trials, missing data presents a statistical problem in evaluating a treatment's efficacy. There are many methods commonly used to assess missing data; however, these methods leave room for bias to enter the study. This thesis was a secondary analysis on data taken from TIME, a phase 2 randomized clinical trial conducted to evaluate the safety and effect of the administration timing of bone marrow mononuclear cells (BMMNC) for subjects with acute myocardial infarction (AMI).^ We evaluated the effect of missing data by comparing the variance inflation factor (VIF) of the effect of therapy between all subjects and only subjects with complete data. Through the general linear model, an unbiased solution was made for the VIF of the treatment's efficacy using the weighted least squares method to incorporate missing data. Two groups were identified from the TIME data: 1) all subjects and 2) subjects with complete data (baseline and follow-up measurements). After the general solution was found for the VIF, it was migrated Excel 2010 to evaluate data from TIME. The resulting numerical value from the two groups was compared to assess the effect of missing data.^ The VIF values from the TIME study were considerably less in the group with missing data. By design, we varied the correlation factor in order to evaluate the VIFs of both groups. As the correlation factor increased, the VIF values increased at a faster rate in the group with only complete data. Furthermore, while varying the correlation factor, the number of subjects with missing data was also varied to see how missing data affects the VIF. When subjects with only baseline data was increased, we saw a significant rate increase in VIF values in the group with only complete data while the group with missing data saw a steady and consistent increase in the VIF. The same was seen when we varied the group with follow-up only data. This essentially showed that the VIFs steadily increased when missing data is not ignored. When missing data is ignored as with our comparison group, the VIF values sharply increase as correlation increases.^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hierarchical linear growth model (HLGM), as a flexible and powerful analytic method, has played an increased important role in psychology, public health and medical sciences in recent decades. Mostly, researchers who conduct HLGM are interested in the treatment effect on individual trajectories, which can be indicated by the cross-level interaction effects. However, the statistical hypothesis test for the effect of cross-level interaction in HLGM only show us whether there is a significant group difference in the average rate of change, rate of acceleration or higher polynomial effect; it fails to convey information about the magnitude of the difference between the group trajectories at specific time point. Thus, reporting and interpreting effect sizes have been increased emphases in HLGM in recent years, due to the limitations and increased criticisms for statistical hypothesis testing. However, most researchers fail to report these model-implied effect sizes for group trajectories comparison and their corresponding confidence intervals in HLGM analysis, since lack of appropriate and standard functions to estimate effect sizes associated with the model-implied difference between grouping trajectories in HLGM, and also lack of computing packages in the popular statistical software to automatically calculate them. ^ The present project is the first to establish the appropriate computing functions to assess the standard difference between grouping trajectories in HLGM. We proposed the two functions to estimate effect sizes on model-based grouping trajectories difference at specific time, we also suggested the robust effect sizes to reduce the bias of estimated effect sizes. Then, we applied the proposed functions to estimate the population effect sizes (d ) and robust effect sizes (du) on the cross-level interaction in HLGM by using the three simulated datasets, and also we compared the three methods of constructing confidence intervals around d and du recommended the best one for application. At the end, we constructed 95% confidence intervals with the suitable method for the effect sizes what we obtained with the three simulated datasets. ^ The effect sizes between grouping trajectories for the three simulated longitudinal datasets indicated that even though the statistical hypothesis test shows no significant difference between grouping trajectories, effect sizes between these grouping trajectories can still be large at some time points. Therefore, effect sizes between grouping trajectories in HLGM analysis provide us additional and meaningful information to assess group effect on individual trajectories. In addition, we also compared the three methods to construct 95% confident intervals around corresponding effect sizes in this project, which handled with the uncertainty of effect sizes to population parameter. We suggested the noncentral t-distribution based method when the assumptions held, and the bootstrap bias-corrected and accelerated method when the assumptions are not met.^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The performance of the Hosmer-Lemeshow global goodness-of-fit statistic for logistic regression models was explored in a wide variety of conditions not previously fully investigated. Computer simulations, each consisting of 500 regression models, were run to assess the statistic in 23 different situations. The items which varied among the situations included the number of observations used in each regression, the number of covariates, the degree of dependence among the covariates, the combinations of continuous and discrete variables, and the generation of the values of the dependent variable for model fit or lack of fit.^ The study found that the $\rm\ C$g* statistic was adequate in tests of significance for most situations. However, when testing data which deviate from a logistic model, the statistic has low power to detect such deviation. Although grouping of the estimated probabilities into quantiles from 8 to 30 was studied, the deciles of risk approach was generally sufficient. Subdividing the estimated probabilities into more than 10 quantiles when there are many covariates in the model is not necessary, despite theoretical reasons which suggest otherwise. Because it does not follow a X$\sp2$ distribution, the statistic is not recommended for use in models containing only categorical variables with a limited number of covariate patterns.^ The statistic performed adequately when there were at least 10 observations per quantile. Large numbers of observations per quantile did not lead to incorrect conclusions that the model did not fit the data when it actually did. However, the statistic failed to detect lack of fit when it existed and should be supplemented with further tests for the influence of individual observations. Careful examination of the parameter estimates is also essential since the statistic did not perform as desired when there was moderate to severe collinearity among covariates.^ Two methods studied for handling tied values of the estimated probabilities made only a slight difference in conclusions about model fit. Neither method split observations with identical probabilities into different quantiles. Approaches which create equal size groups by separating ties should be avoided. ^