19 resultados para Influenza vaccines
Resumo:
Current measures of the health impact of epidemic influenza are focused on analyses of death certificate data which may underestimate the true health effect. Previous investigations of influenza-related morbidity have either lacked virologic confirmation of influenza activity in the community or were not population-based. Community virologic surveillance in Houston has demonstrated that influenza viruses have produced epidemics each year since 1974. This study examined the relation of hospitalized for Acute Respiratory Disease (ARD) to the occurrence of influenza epidemics. Considering only Harris County residents, a total of 13,297 ARD hospital discharge records from hospitals representing 48.4% of Harris County hospital beds were compiled for the period July 1978 through June 1981. Variables collected from each discharge included: age, sex, race, dates of admission and discharge, length of stay, discharge disposition and a maximum of five diagnoses. This three year period included epidemics caused by Influenza A/Brazil (H1N1), Influenza B/Singapore, Influenza A/England (H1N1) and Influenza A/Bangkok (H3N2).^ Correlations of both ARD and pneumonia or influenza hospitalizations with indices of community morbidity (specifically, the weekly frequency of virologically-confirmed influenza virus infections) are consistently strong and suggest that hospitalization data reflect the pattern of influenza activity derived from virologic surveillance.^ While 65 percent of the epidemic period hospital deaths occurred in patients who were 65 years of age or older, fewer than 25 percent of epidemic period ARD hospitalizations occurred in persons of that age group. Over 97 percent of epidemic period hospital deaths were accompanied by a chronic underlying illness, however, 45 percent of ARD hospitalizations during epidemics had no mention of underlying illness. Over 2500 persons, approximately 35 percent of all persons hospitalized during the three epidemics, would have been excluded in an analysis for high risk candidates for influenza prophylaxis.^ These results suggest that examination of hospitalizations for ARD may better define the population-at-risk for serious morbidity associated with epidemic influenza. ^
Resumo:
Children with cystic fibrosis are at increased risk of seasonal influenza associated complications, which makes them a judicious target of interventions designed to increase influenza vaccination rates. The Baylor College of Medicine/Texas Children's Hospital Pediatric Cystic Fibrosis (BCM/TCH CF) Care Center implemented an enhanced multi-component initiative designed to increase influenza vaccination rates in its patient population during the 2011-2012 influenza season. We evaluated the impact of specific components of this intervention on vaccination rates among the clinic's patient population via a historical medical chart review and examined the relationship between vaccination status and the number of pulmonary exacerbations requiring hospital admission during the influenza season. The multi-component intervention was comprised of providing influenza free of charge in the CF Care Center, reminders via phone call and letters, and drive through influenza vaccine clinics on nights and weekends. The intervention to increase influenza vaccination rates led to overall improved vaccination rates among the patients at the BCM/TCH CF Care Center, increasing from 90% adherence observed during the 2010-2011 season to 94% adherence during the 2011-2012 season. The availability of free influenza vaccine in the CF Care Center, combined with reminders about being vaccinated early in the season proved to be the most effective practices for improving the vaccination rate in the CF Care Center.^
Resumo:
Background: Cardiovascular diseases (CVD) are the leading cause of morbidity and mortality worldwide. CVD mainly comprise of coronary heart disease and stroke and were ranked first and fourth respectively amongst leading causes of death in the United States. Influenza (flu) causes annual outbreaks and pandemics and is increasingly recognized as an important trigger for acute coronary syndromes and stroke. Influenza vaccination is an inexpensive and effective strategy for prevention of influenza related complications in high risk individuals. Though it is recommended for all CVD patients, Influenza vaccine is still used at suboptimal levels in these patients owing to prevailing controversy related to its effectiveness in preventing CVD. This review was undertaken to critically assess the effectiveness of influenza vaccination as a primary or secondary prevention method for CVD. ^ Methods: A systematic review was conducted using electronic databases OVID MEDLINE, PUBMED (National Library of Medicine), EMBASE, GOOGLE SCHOLAR and TRIP (Turning Research into Practice). The study search was limited to peer-reviewed articles published in English language from January 1970 through May 2012. The case control studies, cohort studies and randomized controlled trials related to influenza vaccination and CVD, with data on at least one of the outcomes were identified. In the review, only population-based epidemiologic studies in all ethnic groups and of either sex and with age limitation of 30 yrs or above, with clinical CVD outcomes of interest were included. ^ Results: Of the 16 studies (8 case control studies, 6 cohort studies and 2 randomized controlled trials) that met the inclusion criteria, 14 studies reported that there was a significant benefit in u influenza vaccination as primary or secondary prevention method for preventing new cardiovascular events. In contrary to the above findings, two studies mentioned that there was no significant benefit of vaccination in CVD prevention. ^ Conclusion: The available body of evidence in the review elucidates that vaccination against influenza is associated with reduction in the risk of new CVD events, hospitalization for coronary heart disease and stroke and as well as the risk of death. The study findings disclose that the influenza vaccination is very effective in CVD prevention and should be encouraged for the high risk population. However, larger and more future studies like randomized control trials are needed to further evaluate and confirm these findings. ^
Resumo:
Background: Nigeria was one of the 13 countries where avian influenza outbreak in poultry farms was reported during the 2006 avian influenza pandemic threat and was also the first country in Africa to report the presence of H5N1influenza among its poultry population. There are multiple hypotheses on how the avian influenza outbreak of 2006 was introduced to Nigeria, but the consensus is that once introduced, poultry farms and their workers were responsible for 70% of the spread of avian influenza virus to other poultry farms and the population. ^ The spread of avian influenza has been attributed to lack of compliance by poultry farms and their workers with poultry farm biosecurity measures. When poultry farms fail to adhere to biosecurity measures and there is an outbreak of infectious diseases like in 2006, epidemiological investigations usually assess poultry farm biosecurity—often with the aid of a questionnaire. Despite the importance of questionnaires in determining farm compliance with biosecurity measures, there have been few efforts to determine the validity of questionnaires designed to assess poultry farms risk factors. Hence, this study developed and validated a tool (questionnaire) that can be used for poultry farm risk stratification in Imo State, Nigeria. ^ Methods: Risk domains were generated using literature and recommendations from agricultural organizations and the Nigeria government for poultry farms. The risk domains were then used to develop a questionnaire. Both the risk domain and questionnaire were verified and modified by a group of five experts with a research interest in Nigeria's poultry industry and/or avian influenza prevention. Once a consensus was reached by the experts, the questionnaire was distributed to 30 selected poultry farms in Imo State, Nigeria that participated in this study. Survey responses were received for all the 30 poultry farms that were selected. The same poultry farms were visited one week after they completed the questionnaires for on-site observation. Agreement among survey and observation results were analyzed using a kappa test and rated as poor, fair, moderate, substantial, or nearly perfect; and internal consistency of the survey was also computed. ^ Result: Out of the 43 items on the questionnaire, 32 items were validated by this study. The agreement between the survey result and onsite observation was analyzed using kappa test and ranged from poor to nearly perfect. Most poultry farms had their best agreements in the contact section of the survey. The least agreement was noted in the farm management section of the survey. Thirty-two questions on the survey had a coefficient alpha > 0.70, which is a robust internal consistency for the survey. ^ Conclusion: This study developed 14 risk domains for poultry farms in Nigeria and validated 32 items from the original questionnaire that contained 43 items. The validated items can be used to determine the risk of introduction and spread of avian influenza virus in poultry farms in Imo State, Nigeria. After further validations in other states, regions and poultry farm sectors in Nigeria; this risk assessment tool can then be used to determine the risk profile of poultry farms across Nigeria.^