19 resultados para IONIZING RADIATION


Relevância:

60.00% 60.00%

Publicador:

Resumo:

p53 functions as a tumor suppressor through its ability to initiate either growth arrest or apoptosis in cells which have sustained DNA damage. p53 elicits these cellular phenotypes through its biochemical function as a transcriptional activator. By inducing the expression of a battery of target genes, p53 is able to prevent the propagation of cells with damaged DNA. However, the genes transcriptionally induced by p53 which have been identified to date do not fully explain p53 function. p53 has been demonstrated to activate genes involved in cell cycle inhibition, apoptosis and cell proliferation. The reasons for simultaneous activation of p53 targets with disparate, opposing functions are not clear, but may be due to the use of transformed cell lines in previous experiments. In the studies presented in this thesis, the pathway of p53 tumor suppression has been studied in detail in two systems chosen for their relevance to the natural cell environment. One utilizes a normal, unaltered cultured cell system; the other the whole mouse. In order to better understand the role of the known p53 targets in effecting p53 function in normal cells, early rat embryo fibroblasts were irradiated with ultraviolet light to induce DNA damage. It was discovered that p53 protein levels increased in response to irradiation. The known targets of p53, namely, $p21\sp{WAF1/CIP1},\ mdm2,\ cyclin\ G,$ and bax, were shown for the first time to have a differential temporal induction. The growth suppressor $p21\sp{WAF1/CIP1}$ was induced first, followed by cyclin G then mdm2, which is involved in proliferation through its inactivation of p53, and finally, the apoptosis promoter, bax. These findings indicated that p53 activates its target genes in a manner to allow maximum effectiveness of target function. The rat embryo fibroblasts were shown to undergo apoptosis 24 h after irradiation. Additionally, investigation of these cells for cell cycle alterations demonstrated a brief arrest in G1. In the second study, thymocytes from mice with wild type p53 were shown to undergo apoptosis and activate p53 target genes upon ionizing radiation treatment, while thymocytes from mice deficient in p53 could not. The p53 target genes mdm2 and fas were tested in vivo for their ability to mediate p53-regulated apoptosis, and were found dispensible for that cellular function. Therefore, the p53 targets identified to date do not fully explain the ability of p53 to function as a tumor suppressor. Potentially, functional redundancy between the known targets would account for the data seen in these experiments. Additionally, identification of additional target genes should add further understanding of the p53 pathway of tumor suppression. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

p53 is required for the maintenance of the genomic stability of cells. Mutations in the p53 tumor-suppressor gene occur in more than 50% of human cancers of diverse types. In addition, 70% of families with Li-Fraumeni syndrome have a germline mutation in p53, predisposing these individuals to multiple forms of cancer. In response to DNA damage, p53 becomes stabilized and activated. However the exact mechanism by which DNA damage signals the stabilization and activation of p53 still remains elusive. The biochemical activity of p53 that is required for tumor suppression, and presumably the cellular response to DNA damage, involves the ability of the protein to bind to specific DNA sequences and to function as a transcription factor. For the downstream targets, p53 transactivates many genes involved in growth arrest, apoptosis and DNA repair such as p21, Bax and GADD45, respectively. An open question in the field is how cells can determine the downstream effects of p53. ^ We hypothesize that, through its associated proteins, p53 can differentially transactivate its target genes, which determine its downstream effect. Additionally, p53 interacting proteins may be involved in signaling for the stabilization and activation of p53. Therefore, a key aspect to understanding p53 function is the identification and analysis of proteins that interact with it. We have employed the Sos recruitment system (SRS), a cytoplasmic yeast two-hybrid screen to identify p53 interacting proteins. The SRS is based on the ability of Sos to activate Ras when it becomes localized to the plasma membrane. The system takes advantage of an S. cerevisiae strain, cdc25-2 temperature sensitive mutant, harboring a mutation in Sos. In this strain, fusion proteins containing a truncated Sos will only localize to the membrane by protein-protein interaction, which allows growth at non-permissive temperature. This system allows the use of intact transcriptional activators such as p53. ^ To date, using a modified SRS library screen to identify p53 interacting proteins, I have identified p53 (known to interact with itself) and a novel p53-interacting protein (PIP). PIP is a specific p53 interacting protein in the SRS. The interaction of p53 and PIP was further confirmed by performing in vitro and in vivo binding assays. In the in vivo binding study, the interaction can only be detected in the presence of ionizing radiation suggesting that this interaction might be involved in DNA-damage induced p53-signalling pathway. After screening cDNA and genomic libraries, a full-length PIP-cDNA clone ( ∼ 3kb) was obtained which encodes a protein of 429 amino acids with calculated molecular weight of 46 kDa. The results of genebank search indicated that the PIP is an unidentified gene and contains a conserved ring-finger domain, which is present in a diverse family of regulatory proteins involved in different aspects of cellular function. Northern blot analysis revealed that the size of its messenge is approximately 3 kb preferentially expressed in brain, heart, liver and kidney. The PIP protein is mainly located in the cytoplasm as determined by the cellular localization of a green fluorescence fusion protein. Preliminary functional analysis revealed that PIP downregulated the transactivation activity of p53 on both p21 and mdm2 promoters. Thus, PIP may be a novel negative regulator of p53 subsequent to DNA damage. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ras proteins (H-, N-, K4A-, and K4B) are associated with cellular resistance to ionizing radiation (IR) and, consequently, may provide a potential target for radiosensitization strategies in cancer treatment. Several approaches have been used to compromise Ras activity and enhance IR-induced cell killing; however, these techniques either target proteins in addition to Ras or only target one member of the Ras family. In this study, I have used an adenovirus (AV1Y28) that expresses a single-chain antibody fragment directed against Ras proteins to investigate the mechanism(s) responsible for Ras-mediated radiation resistance. AV1Y28 enhanced the radiosensitivity of a number of human tumor cell lines without affecting the radiosensitivity of normal human fibroblasts. Whereas AV1Y28-mediated sensitization was independent of ras gene mutational status, it was dependent on active Ras proteins suggesting that AV1Y28 may be useful against a broad range of tumors. AV1Y28-mediated cell killing was not the result of redistributing cells into a more radiosensitive phase of the cell cycle and did not enhance IR-induced apoptosis. Given that Ras proteins transduce environmental signals to the nucleus, the effect of AV1Y28 on the IR-inducible transcription factor NF-κB were determined. Although AV1Y28 inhibited IR-induced NF-κB through the suppression of IKK, additional work established that NF-κB did not play a role in AV1Y28-mediated radiosensitization. However, a novel component of the signaling pathway responsible for IR-induced NF-κB was identified. Previous studies had suggested a relationship between mutant ras genes and IR-induced G2 delay; therefore the effects of AV1Y28 on the progression of cells from G2 to M after IR were determined. Pretreatment of cells with AV1Y28 prevented the IR-induced G2 arrest. AV1Y28-mediated abrogation of IR-induced G2 arrest correlated with those cell line lines that were sensitized by AV1Y28. Moreover, a significant increase in cells undergoing mitotic catastrophe was found after IR in AV1Y28 treated cells. The abrogation of G2 arrest by AV1Y28 was the result of maintaining the active form of cdc2, an inducer of mitosis, after exposure to IR. This study identified the mechanism of AV1Y28-mediated radiosensitization and has provided insight into the signal transduction pathways responsible for Ras-mediated radiation resistance. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A major goal of chemotherapy is to selectively kill cancer cells while minimizing toxicity to normal cells. Identifying biological differences between cancer and normal cells is essential in designing new strategies to improve therapeutic selectivity. Superoxide dismutases (SOD) are crucial antioxidant enzymes required for the elimination of superoxide (O2·− ), a free radical produced during normal cellular metabolism. Previous studies in our laboratory demonstrated that 2-methoxyestradiol (2-ME), an estradiol derivative, inhibits the function of SOD and selectively kills human leukemia cells without exhibiting significant cytotoxicity in normal lymphocytes. The present work was initiated to examine the biochemical basis for the selective anticancer activity of 2-ME. Investigations using two-parameter flow cytometric analyses and ROS scavengers established that O2·− is a primary and essential mediator of 2-ME-induced apoptosis in cancer cells. In addition, experiments using SOD overexpression vectors and SOD knockout cells found that SOD is a critical target of 2-ME. Importantly, the administration of 2-ME resulted in the selective accumulation of O 2·− and apoptosis in leukemia and ovarian cancer cells. The preferential activity of 2-ME was found to be due to increased intrinsic oxidative stress in these cancer cells versus their normal counterparts. This intrinsic oxidative stress was associated with the upregulation of the antioxidant enzymes SOD and catalase as a mechanism to cope with the increase in ROS. Furthermore, oxygen consumption experiments revealed that normal lymphocytes decrease their respiration rate in response to 2-ME-induced oxidative stress, while human leukemia cells seem to lack this regulatory mechanism. This leads to an uncontrolled production of O2·−, severe accumulation of ROS, and ultimately ROS-mediated apoptosis in leukemia cells treated with 2-ME. The biochemical differences between cancer and normal cells identified here provide a basis for the development of drug combination strategies using 2-ME with other ROS-generating agents to enhance anticancer activity. The effectiveness of such a combination strategy in killing cancer cells was demonstrated by the use of 2-ME with agents/modalities such as ionizing radiation and doxorubicin. Collectively, the data presented here strongly suggests that 2-ME may have important clinical implications for the selective killing of cancer cells. ^