338 resultados para Health Sciences, Pharmacology|Chemistry, Pharmaceutical|Health Sciences, Oncology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A major goal of chemotherapy is to selectively kill cancer cells while minimizing toxicity to normal cells. Identifying biological differences between cancer and normal cells is essential in designing new strategies to improve therapeutic selectivity. Superoxide dismutases (SOD) are crucial antioxidant enzymes required for the elimination of superoxide (O2·− ), a free radical produced during normal cellular metabolism. Previous studies in our laboratory demonstrated that 2-methoxyestradiol (2-ME), an estradiol derivative, inhibits the function of SOD and selectively kills human leukemia cells without exhibiting significant cytotoxicity in normal lymphocytes. The present work was initiated to examine the biochemical basis for the selective anticancer activity of 2-ME. Investigations using two-parameter flow cytometric analyses and ROS scavengers established that O2·− is a primary and essential mediator of 2-ME-induced apoptosis in cancer cells. In addition, experiments using SOD overexpression vectors and SOD knockout cells found that SOD is a critical target of 2-ME. Importantly, the administration of 2-ME resulted in the selective accumulation of O 2·− and apoptosis in leukemia and ovarian cancer cells. The preferential activity of 2-ME was found to be due to increased intrinsic oxidative stress in these cancer cells versus their normal counterparts. This intrinsic oxidative stress was associated with the upregulation of the antioxidant enzymes SOD and catalase as a mechanism to cope with the increase in ROS. Furthermore, oxygen consumption experiments revealed that normal lymphocytes decrease their respiration rate in response to 2-ME-induced oxidative stress, while human leukemia cells seem to lack this regulatory mechanism. This leads to an uncontrolled production of O2·−, severe accumulation of ROS, and ultimately ROS-mediated apoptosis in leukemia cells treated with 2-ME. The biochemical differences between cancer and normal cells identified here provide a basis for the development of drug combination strategies using 2-ME with other ROS-generating agents to enhance anticancer activity. The effectiveness of such a combination strategy in killing cancer cells was demonstrated by the use of 2-ME with agents/modalities such as ionizing radiation and doxorubicin. Collectively, the data presented here strongly suggests that 2-ME may have important clinical implications for the selective killing of cancer cells. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tyrosine hydroxylase (TH), the initial and rate limiting enzyme in the catecholaminergic biosynthetic pathway, is phosphorylated on multiple serine residues by multiple protein kinases. Although it has been demonstrated that many protein kinases are capable of phosphorylating and activating TH in vitro, it is less clear which protein kinases participate in the physiological regulation of catecholamine synthesis in situ. These studies were designed to determine if protein kinase C (PK-C) plays such a regulatory role.^ Stimulation of intact bovine adrenal chromaffin cells with phorbol esters results in stimulation of catecholamine synthesis, tyrosine hydroxylase phosphorylation and activation. These responses are both time and concentration dependent, and are specific for those phorbol ester analogues which activate PK-C. RP-HPLC analysis of TH tryptic phosphopeptides indicate that PK-C phosphorylates TH on three putative sites. One of these (pepetide 6) is the same as that phosphorylated by both cAMP-dependent protein kinase (PK-A) and calcium/calmodulin-dependent protein kinase (CaM-K). However, two of these sites (peptides 4 and 7) are unique, and, to date, have not been shown to be phosphorylated by any other protein kinase. These peptides correspond to those which are phosphorylated with a slow time course in response to stimulation of chromaffin cells with the natural agonist acetylcholine. The activation of TH produced by PK-C is most closely correlated with the phosphorylation of peptide 6. But, as evident from pH profiles of tyrosine hydroxylase activity, phosphorylation of peptides 4 and 7 affect the expression of the activation produced by phosphorylation of peptide 6.^ These data support a role for PK-C in the control of TH activity, and suggest a two stage model for the physiological regulation of catecholamine synthesis by phosphorylation in response to cholinergic stimulation. An initial fast response, which appears to be mediated by CaM-K, and a slower, sustained response which appears to be mediated by PK-C. In addition, the multiple site phosphorylation of TH provides a mechanism whereby the regulation of catecholamine synthesis appears to be under the control of multiple protein kinases, and allows for the convergence of multiple, diverse physiological and biochemical signals. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

9-$\beta$-D-arabinofuranosyl-2-fluoroadenine (F-ara-A) is an analogue of adenosine and 2$\sp\prime$-deoxyadenosine with potent antitumor activity both in vitro and in vivo. The mechanism of action of F-ara-A was evaluated both in whole cells and in experimental systems with purified enzymes. F-ara-A was converted to its 5$\sp\prime$-triphosphate F-ara-ATP in cells and then incorporated into DNA in a self-limiting manner. About 98% of the incorporated F-ara-AMP residues were located at the 3$\sp\prime$-termini of DNA strands, suggesting a chain termination property of this compound. DNA synthesis in CEM cells was inhibited by F-ara-A treatment with an IC$\sb{50}$ value of 1 $\mu$M. Cells were not able to restore the normal level of DNA synthesis even after being cultured in drug-free medium for 40 h. A DNA primer extension assay with M13mp18(+) single-stranded DNA template using purified human DNA polymerases $\alpha$ and further revealed that F-ara-ATP competed with dATP for incorporation into the A sites of the elongating DNA strands. The incorporation of F-ara-AMP into DNA resulted in a termination of DNA synthesis at the incorporated A sites. Pol $\alpha$ and $\delta$ were not able to efficiently extend the DNA primer with F-ara-AMP at its 3$\sp\prime$-end. Furthermore, the presence of F-ara-AMP at the 3$\sp\prime$-end of an oligodeoxyribonucleotide impaired its ligation with an adjacent DNA fragment by human and T4 ligases. Human DNA polymerase $\alpha$ incorporated more F-ara-AMP into DNA than polymerase $\delta$ and was more sensitive to the inhibition by F-ara-ATP, suggesting that polymerase $\alpha$ may be a preferred target for this analogue. On the other hand, DNA-dependent nucleotide turnover experiments and sequencing gel analysis demonstrated that DNA polymerase $\delta$ was able to remove the incorporated F-ara-AMP residue from the 3$\sp\prime$-end of the DNA strand with its 3$\sp\prime$-5$\sp\prime$ exonuclease activity in vitro, subsequently permitting further elongation of the DNA strand.^ The incorporation of F-ara-AMP into DNA was linearly correlated both with the inhibition of DNA synthesis and with the loss of clonogenicity. Termination of DNA synthesis and deletion of genetic material resulted from F-ara-AMP incorporation may be the mechanism responsible for cytotoxicity of F-ara-A. (Abstract shortened with permission of author.) ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activation of protein kinase C (PKC) causes multiple effects on adenylyl cyclase (AC), (i) an inhibition of (hormone) receptor/G$\sb{\rm s}$ coupling, consistent with PKC modification of the receptor and (ii) a postreceptor sensitization consistent with a PKC-mediated modification of the stimulatory (G$\sb{\rm s}$) or inhibitory (G$\sb{\rm i}$) G-proteins or the catalyst (C) of AC. In L cells expressing the wild-type beta-adrenergic receptor ($\beta$AR) 4-$\beta$ phorbol 12-myristate-13-acetate (PMA) caused 2-3-fold increases in the K$\sb{\rm act}$ and V$\sb{\rm max}$ for epinephrine-stimulated AC activity and an attenuation of GTP-mediated inhibition of AC. Deletion of a concensus site for PKC phosphorylation (amino acids 259-262) from the $\beta$AR eliminated the PMA-induced increase in the K$\sb{\rm act}$, but had no effect on the other actions of PMA. PMA also increased the K$\sb{\rm act}$ and V$\sb{\rm max}$ for prostaglandin E$\sb1$ (PGE$\sb1$)-stimulated AC and the V$\sb{\rm max}$ for forskolin-stimulated AC. Maximal PMA-induced sensitizations were observed when AC was assayed in the presence of 10 $\mu$M GTP and 0.3 mM (Mg$\sp{++}$).^ Liao et al. (J. Biol. Chem. 265:11273-11284 (1990)) have shown that the P$\sb2$ purinergic receptor agonist ATP stimulates hydrolysis of 4,5 inositol bisphosphate (PIP$\sb2$) by phospholipase C (PLC) in L cells. To determine if agonists that stimulate PLC and PMA had similar effects on AC function we compared the effects of ATP and PMA. ATP caused a rapid 50-150% sensitization of PGE$\sb1$-, epinephrine-, and forskolin-stimulated AC activity with an EC$\sb{50}$ of 3 $\mu$M ATP. The sensitization was similar (i.e. Mg$\sp{++}$ and GTP sensitivity) to that caused by 10 nM PMA. However, unlike PMA ATP did not affect the K$\sb{\rm act}$ for hormone-stimulated AC and its effects were unaltered by down-regulation of PKCs following long term PMA treatment. Our results demonstrate that a PKC concensus site in the $\beta$AR, is required for the PMA-induced decrease in receptor/G$\sb{\rm s}$ coupling. Our data also indicate that activation of P$\sb2$ purinergic receptors by ATP may be important in the sensitization of AC in L cells. The mechanism behind this effect remains to be determined. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A micro-electrospray interface was developed specifically for the neurobiological applications described in this dissertation. Incorporation of a unique nano-flow liquid chromatography micro-electrospray "needle" into the micro-electrospray interface (micro-ES/MS) increased the sensitivity of the mass spectrometric assay by $\sim$1000 fold and thus permitted the first analysis of specific neuroactive compounds in brain extracellular fluid collected by in vivo microdialysis (Md).^ Initial in vivo data presented deals with the pharmacodynamics of a novel GABA$\sb{\rm B}$ antagonist and the availability of the compound in its parent (unmetabolized) form to the brain of the anesthetized rat. Next, the first structurally specific endogenous release of (Met) $\sp5$-enkephalin was demonstrated in unanesthetized freely-moving animals (release of $\sim$6.5 fmole of (Met) $\sp5$-enkephalin into the dialysate by direct neuronal depolarization). The Md/micro-ES/MS system was used to test the acute effects of drugs of abuse on the endogenous release of (Met) $\sp5$-enkephalin from the globus pallidus/ventral pallidum brain region in rats. Four drugs known to be abused by man (morphine, cocaine, methamphetamine and diazepam) were tested. Morphine and cocaine both elicited a two-fold or more increase in the release of (Met) $\sp5$-enkephalin over vehicle controls. Diazepam elicited a small decrease in (Met) $\sp5$-enkephalin levels and methamphetamine showed no significant effect on (Met) $\sp5$-enkephalin. These results imply that (Met) $\sp5$-enkephalin may be involved in the reward pathway of certain drugs of abuse. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The insulin receptor transduces insulin's biological signal through the tyrosine kinase present in the receptor's B subunit. The activated insulin receptor kinase then phosphorylates a series of intracellular substrate including insulin receptor substrate 1 (IRS-1), which has been shown to be the pivotal substrate for insulin receptor signal transduction. The phosphorylated tyrosine residues in IRS-1 can bind and activate the downstream effectors, many of which are SH2 domain containing proteins such as phosphotidylinositol 3-kinase, growth factor binding protein 2, and SH2 phosphotyrosine phosphatase 2. Phosphorylated synthetic IRS-1 peptides with the corresponding sequences of the IRS-1 have been shown to associate and activate their respective SH2 domain containing proteins. Another important event happening during insulin binding with the insulin receptor is that the insulin receptor rapidly undergoes internalization. However, the insulin receptor signalling and the receptor endocytosis have been studied as two independent processes. The hypothesis of the present thesis is that the insulin receptor endocytosis is involved in insulin receptor signalling and signal termination. The results of the present investigation demonstrate that insulin receptors in the earliest stage of endocytosis contain significantly greater kinase activity towards IRS-1 peptides than the receptors localized at the plasma membrane, indicating that they are potentially more capable of transducing signals. On the other hand, insulin receptors in the middle and late stage of endocytosis lose their kinase activity, suggesting that insulin receptor kinase activity inactivation and signal termination might take place in the late phase of the insulin receptor internalization. In addition, this study also found that the increased insulin receptor kinase activity in the endosomes is related to the tyrosyl phosphorylation of the specific domains of the receptor's $\beta$ subunit. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There have been multiple reports which indicate that variations in $\beta$AR expression affect the V$\sb{\rm max}$ observed for the agonist-dependent activation of adenylylcyclase. This observation has been ignored by most researchers when V$\sb{\rm max}$ values obtained for wild type and mutant receptors are compared. Such an imprecise analysis may lead to erroneous conclusions concerning the ability of a receptor to activate adenylylcyclase. Equations were derived from the Cassel-Selinger model of GTPase activity and Tolkovsky and Levitzki's Collision Coupling model which predict that the EC$\sb{50}$ and V$\sb{\rm max}$ for the activation of adenylylcyclase are a function of receptor number. Experimental results for L cell clones in which either hamster or human $\beta$AR were transfected at varying levels showed that EC$\sb{50}$ decreases and V$\sb{\rm max}$ increases as receptor number increases. Comparison of these results with simulations obtained from the equations describing EC$\sb{50}$ and V$\sb{\rm max}$ showed a close correlation. This documents that the kinetic parameters of adenylylcyclase activation change with the level of receptor expression and relates this phenomenon to a theoretical framework concerning the mechanisms involved in $\beta$AR signal transduction.^ One of the terms used in the equations which expressed the EC$\sb{50}$ and V$\sb{\rm max}$ as a function of receptor number is coupling efficiency, defined as $\rm k\sb1/k\sb{-1}$. Calculation of $\rm k\sb1/k\sb{-1}$ can be accomplished for wild type receptors with the easily measured experimental values of agonist K$\sb{\rm d}$, EC$\sb{50}$ and receptor number. This was demonstrated for hamster $\beta$AR which yielded a coupling efficiency of 0.15 $\pm$ 0.003 and human $\beta$AR which yielded a coupling efficiency of 0.90 $\pm$ 0.031. $\rm k\sb1/k\sb{-1}$ replaces the traditional qualitative evaluation of the ability to activate adenylylcyclase, which utilizes V$\sb{\rm max}$ without correction for variation in receptor number, with a quantitative definition that more accurately describes the ability of $\beta$AR to couple to G$\sb{\rm s}$.^ The equations which express the EC$\sb{50}$ and V$\sb{\rm max}$ for adenylylcyclase activation as a function of receptor number and coupling efficiency were tested to determine whether they could accurately simulate the changes seen in these parameters during desensitization. Data from original desensitization experiments and data from the literature (24,25,52,54,83) were compared to simulated changes in EC$\sb{50}$ and V$\sb{\rm max}$. In a variety of systems the predictions of the equations were consistent with the changes observed in EC$\sb{50}$ and V$\sb{\rm max}$. In addition reductions in the calculated value of $\rm k\sb1/k\sb{-1}$ was shown to correlate well with $\beta$AR phosphorylation and to be minimally affected by sequestration and down-regulation. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gastrin-releasing peptide (GRP) and other bombesin-like peptides stimulate hormone secretion and cell proliferation by binding to specific G-protein-coupled receptors. Three studies were performed to identify potential mechanisms involved in GRP/bombesin receptor regulation.^ Although bombesin receptors are localized throughout the gastrointestinal tract, few gastrointestinal cell lines are available to study bombesin action. In the first study, the binding and function of bombesin receptors in the human HuTu-80 duodenal cancer cell line were characterized. ($\sp{125}$I-Tyr$\sp4$) bombesin bound with high affinity to a GRP-preferring receptor. Bombesin treatment increased IP$\sb3$ production, but had no effect on cell proliferation. Similar processing of ($\sp{125}$I-Tyr$\sp4$) bombesin and of GRP-receptors was observed in HuTu-80 cells and Swiss 3T3 fibroblasts, a cell line which mitogenically responds to bombesin. Therefore, the lack of a bombesin mitogenic effect in HuTu-80 cells is not due to unusual processing of ($\sp{125}$I-Tyr$\sp4$) bombesin or rapid GRP-receptor down-regulation.^ In the second study, a bombesin antagonist was developed to study the processing and regulatory events after antagonist binding. As previously shown, receptor bound agonist, ($\sp{125}$I-Tyr$\sp4$) bombesin, was rapidly internalized and degraded in chloroquine-sensitive compartments. Interestingly, receptor-bound antagonist, ($\sp{125}$I-D-Tyr$\sp6$) bombesin(6-13)PA was not internalized, but degraded at the cell-surface. In contrast to bombesin, (D-Tyr$\sp6$) bombesin(6-13)PA treatment did not cause receptor internalization. Together these results demonstrate that receptor regulation and receptor-mediated processing of antagonist is different from that of agonist.^ Bombesin receptors undergo acute desensitization. By analogy to other G-protein-coupled receptors, a potential desensitization mechanism may involve receptor phosphorylation. In the final study, $\sp{32}$P-labelled Swiss 3T3 fibroblasts and CHO-mBR1 cells were treated with bombesin and the GRP-receptor was immunoprecipitated. In both cell lines, bombesin treatment markedly stimulated GRP-receptor phosphorylation. Furthermore, bombesin-stimulated GRP-receptor phosphorylation occurred within the same time period as bombesin-stimulated desensitization, demonstrating that these two processes are correlated.^ In conclusion, these studies of GRP-receptor regulation further our understanding of bombesin action and provide insight into G-protein-coupled receptor regulation in general. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyclosporine A (CSA) is a cyclic eleven amino acid, lipophilic molecule used therapeutically as an immunosuppressive agent. Cyclosporine can specifically inhibit the transcription of a number of different genes. It is known that CSA is bound almost exclusively to lipoproteins in plasma, however, the relationship between the low density lipoprotein (LDL), the LDL receptor, and CSA has not been fully elucidated. The exact mechanism of cellular uptake of CSA is unknown, but it is believed to be by simple passive diffusion across the cell membrane. In addition, it has been recently shown that the frequent finding of hypercholesterolemia seen in patients treated with CSA can be explained by a CSA-induced effect. The mechanism by which CSA induces hypercholesterolemia is not known. We have used an LDL receptor-deficient animal model, the Watanabe Heritable Hyperlipidemic (WHHL) rabbit to investigate the role of LDL and the LDL receptor in the cellular uptake of CSA. Using this animal model, we have shown that CSA uptake by lymphocytes is predominantly LDL receptor-mediated. Chemical modification of apoB-100 on LDL particles abolishes their ability to bind to the LDL receptor. When CSA is incubated with modified LDL much less is taken-up than when native LDL is incubated with CSA. Treatment of two human cell lines with CSA results in a dose-dependent decrease in LDL receptor mRNA levels. Using a novel transfection system involving the 5$\sp\prime$-flanking region of the LDL receptor gene, we have found that CSA decreases the number of transcripts, but is dependent on whether or not cholesterol is present and the stage of growth of the cells. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metastasis is the major cause of death in cancer patients. Since many cancers show organ-preference of metastasis, elucidation of the underlying mechanisms of metastasis will benefit diagnosis or treatment of metastatic diseases. Adhesion mechanisms are thought to be involved in organ-preference of metastasis, because metastatic cells show organ preference in adhering to organ-derived microvascular endothelial cells. The adhesion molecules in this process remain largely unidentified. I have examined a series of murine RAW117 large-cell lymphoma cells variants selected in vivo for liver-colonizing properties ($\rm{H10{>>}L17>P}$). The highly liver-metastatic H10 cells were found to differentially express much higher levels of integrin $\alpha\rm\sb{v}\beta\sb3$ than L17 or P cells. H10 cells also adhered at higher rates to vitronectin and fibronectin than to fibrinogen, fibrin, laminin and type I collagen, and adhered at significantly higher rates to (GRGDS)$\sb4$ than to monomeric RGD-peptides. In contrast, P and L17 cells did not adhere well to the above substrates. H10 cells also spread well on vitronectin and migrated toward vitronectin concentration gradients. Pretreament of H10 cells with anti-$\beta\sb3$ monoclonal antibodies resulted in significant decreases in adhesion of H10 cells to vitronectin and immobilized (GRGDS)$\sb4$, and reduced the formation of experimental liver metastases in syngeneic Balb/c mice.^ Adhesion of RAW117 cells under hydrodynamic shear stresses was also studied because tumor cell adhesion occurs under fluid shear stresses in target organ microvessels. Similar to their properties found with static adhesion assays, H10 cells stabilized their hydrodynamic adhesion to vitronectin, fibronectin and (GRGDS)$\sb4$ much more quickly than P or L17 cells. Unlike their static adhesion properties, RAW117 cells showed differential adhesion stabilization to liver-sinusoidal endothelial cell-derived extracellular matrix ($\rm{H10{>>}L17>P}$). Although not supporting static adhesion of RAW117 cells, monomeric RGD-peptides mediated adhesion stabilization of H10 cells but not L17 or P cells. Integrin $\rm\alpha\sb{v}\beta\sb3$ was found to be involved in stabilizing H10 cell adhesion to vitronectin, (GRGDS)$\sb4$, monomeric RGD-peptide R1, and liver sinusoidal endothelial cell-derived extracellular matrix.^ This study is the first to provide evidence that integrin $\rm\alpha\sb{v}\beta\sb3$ is differentially expressed in liver-metastatic lymphoma cells and involved in differential adhesion of these cells. The results indicate that strong static adhesion and especially the unique hydrodynamic adhesion of RAW117 cells to the RGD-containing substrates correlate with liver-metastatic potentials. Thus, integrin $\rm\alpha\sb{v}\beta\sb3$ may play an important role in liver-preferential metastasis of RAW117 large-cell lymphoma cells. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radioimmunotherapy (RIT) with i.v. administered radiolabeled IgG can selectively irradiate tumor cells in vivo. However, it only provides effective therapy for lymphomas. Intracompartmental RIT with radiolabeled human monoclonal IgM may allow curative treatment of solid tumors by increasing tumor deposition of radioactivity, reducing systemic toxicity and allowing repeated administration. This hypothesis was tested in nude mouse models with IgM radiolabeled with indium-111 $\rm(\sp{111}In)$ or yttrium-90 $\rm(\sp{90}Y).$ The use of two radioisotopes, $\rm\sp{111}In$ for imaging and $\rm\sp{90}Y$ for therapy, allow for more quantitative and cautious development of RIT.^ Radiolabled 2B12, an IgM reactive with human ovarian carcinomas was tested by i.v. and intraperitoneal (i.p.) administration in nude mice bearing i.p. nodules of a human ovarian carcinoma cell line (SKOV3 NMP2). Radiolabeled CR4E8, an IgM reactive with human squamous cell carcinomas was tested by i.v. and intralesional (i.l.) administration in nude mice bearing subcutaneous tumors of a human head and neck squamous cell carcinoma cell line (886). These two models were selected to test proof of concept. Radiolabeled irrelevant IgM (CH-1B9), and $\rm\sp{90}Y$-aggregate served as specificity controls. Biodistribution was performed by excising, weighing and then measuring the radioactivity of tumor and normal organs. Therapy was conducted with i.p. $\rm\sp{90}Y$-labeled 2B12 using both single and fractionated administration and with i.l. $\rm\sp{90}Y$-labeled CR4E8 using single administration. Mice were monitored for tumor response, survival and systemic toxicity.^ Intracompartmental administration of radiolabeled IgM produced immediate high and prolonged tumor deposition of radioactivity with low normal tissue uptake. In contrast, i.v. administration resulted in low tumor, but high liver and spleen uptake. Similar biodistributions were demonstrated for $\rm\sp{111}In$- and $\rm\sp{90}Y$-labeled IgM. Intraperitoneal therapy with $\rm\sp{90}Y$-labeled 2B12 increased survival by approximately 12 days for every 100 $\rm\mu Ci$ of activity without significant toxicity for single (0-300 $\rm\mu Ci)$ and fractionated (150-510 $\rm\mu Ci)$ administration. Intralesional therapy with $\rm\sp{90}Y$-labeled CR4E8 (150-400 $\rm\mu Ci)$ induced prolonged complete regressions. Significant local or systemic toxicity was not observed.^ Intracompartmental RIT with radiolabeled tumor-reactive human monoclonal IgM can selectively irradiate tumor cells. Intracompartmental radiolabled IgM can significantly extend the survival of treated mice with minimal toxicity. It deserves further development as a new cancer therapy. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Non-Hodgkin's Lymphoma (NHLs) are neoplasms of the immune system. Currently, less than 1% of the etiology of the 22,000 newly diagnosed lymphoma cases in the U.S.A. every year is known. This disease has a significant prevalence and high mortality rate. Cell growth in lymphomas has been shown to be an important parameter in aggressive NHL when establishing prognosis, as well as an integral part in the pathophysiology of the disease process. While many aggressive B cell NHLs respond initially to chemotherapeutic regimens such as CHOP-bleo (adriamycin, vincristine and bleomycin) etc., relapse is common, and the patient is then often refractory to further salvage treatment regimens.^ To assess their potential to inhibit aggressive B cell NHLs and induce apoptosis (also referred to as programmed cell death (PCD)), it was proposed to utilize the following biological agents-liposomal all-trans retinoic acid (L-ATRA) which is a derivative of Vitamin A in liposomes and Vitamin D3. Preliminary evidence indicates that L-ATRA may inhibit cell growth in these cells and may induce PCD as well. Detailed studies were performed to understand the above phenomena by L-ATRA and Vitamin D3 in recently established NHL-B cell lines and primary cell cultures. The gene regulation involved in the case of L-ATRA was also delineated. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Osteopontin (OPN) is a highly-phosphorylated extracellular matrix protein localized in bone, kidney, placenta, T-lymphocytes, macrophages, smooth muscle of the vascular system, milk, urine, and plasma. In ROS 17/2.8 osteoblast-like osteosarcoma cells, 1,25-dihydroxyvitamin D3 [1,25(OH)2D 3] regulates OPN at the transcriptional level resulting in increased steady state mRNA levels and increased production of OPN protein, maximal at 48 hours. Using ROS 17/2.8 cells as an osteoblast model, OPN was purified from culture medium after three hour treatments of either vehicle (ethanol) or 1,25(OH)2D3 via barium citrate precipitation followed by immunoaffinity chromatography. ^ Here, further evidence of regulation of OPN by 1,25(OH)2D 3 at the posttranslational level is presented. Prior to the up-regulation of OPN at the transcriptional level, 1,25(OH)2D3 induces a shift in OPN isoelectric point (pI) detected on two-dimensional gels from pI 4.6 to pI 5.1. Loading equal amounts of [32P]-labeled OPN recovered from ROS 17/2.8 cells exposed to 1,25(OH)2D3 or vehicle alone for three hours reveals that the shift from pI 4.6 to 5.1 is the result of reduced phosphorylation. Using structural analogs to 1,25(OH) 2D3, analog AT [25-(OH)-16-ene-23-yne-D3], which triggers Ca2+ influx through voltage sensitive Ca2+ channels but does not bind to the vitamin D receptor, mimicked the OPN pI shift while analog BT [1,25(OH)2-22-ene-24-cyclopropyl-D 3], which binds to the vitamin D receptor but does not allow Ca 2+ influx, did not. Inclusion of the Ca2+ channel blocker nifedipine also blocks the charge shift conversion of OPN. Further analysis of the signaling pathway initiated by 1,25(OH)2D3 reveals that inhibition of the cyclic 3′,5′ -adenosine monophosphate-dependent kinase, protein kinase A, or inhibition of the cyclic 3′,5′-guanine monophosphate-dependent kinase, protein kinase G, also prevents the charge shift conversion. ^ Isolation of OPN from rat femurs and tibiae provides evidence for the existence of these two OPN charge forms in vivo, evidenced by differential migration on isoelectric focusing gels and sodium dodecyl sulfate-polyacrylamide gels. Peptide sequencing of rat long bone fractions revealed the presence of a presumed dentin specific protein, dentin matrix protein-1 (DMP-1). Western blot analysis confirmed the existence of DMP-1 in these fractions. ^ Using the OPN charge forms in functional assays, it was determined that the charge forms have differential roles in both cell surface and mineralization functions. In cell attachment assays and Ca2+ influx assays using PC-3 prostate cancer cells, the pI 5.1 charge form of OPN was found to permit binding and increase intracellular Ca2+ concentrations of PC-3 cells. The increase in intracellular Ca2+ concentration was found to be integrin αvβ3-dependent. In mineralization assays, the pI 4.6 charge form of OPN promoted hydroxyapatite formation, while the pI 5.1 charge form had improved Ca2+ binding ability. ^ In conclusion, these findings suggest that 1,25(OH) 2D3 regulates OPN not only at the transcriptional level, but also plays a role in determination of the OPN phosphorylation state. The latter involves a short term (less than three hours) treatment and is associated with membrane-initiated Ca2+ influx. Functional assays utilizing the two OPN charge forms reveal the dependence of OPN post-translational state on its function. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cytochromes P450 (P450) comprise a superfamily of hemoproteins that function in concert with NADPH-cytochrome P450 reductase (P450-reductase) to metabolize both endogenous and exogenous compounds. Many pharmacological agents undergo phase I metabolism by this P450 and P450-reductase monooxygenase system. Phase I metabolism ensures that these highly hydrophobic xenobiotics are made more hydrophilic, and hence easier to extrude from the body. While the majority of phase I metabolism occurs in the liver, metabolism in extrahepatic organ-systems like the intestine, kidney, and brain can have important roles in drug metabolism and/or efficacy. ^ While P450-mediated phase I metabolism has been well studied, investigators have only recently begun to elucidate what physiological roles P450 may have. One way to approach this question is to study P450s that are highly or specifically expressed in extrahepatic tissues. In this project I have studied the role of a recently cloned P450 family member, P450 2D18, that was previously shown to be expressed in the rat brain and kidney, but not in the liver. To this end, I have used the baculovirus expression system to over-express recombinant P450 2D18 and purified the functional enzyme using nickel and hydroxylapatite chromatography. SDS-PAGE analysis indicated that the enzyme was purified to electrophoretic homogeneity and Western analysis showed cross-reactivity with rabbit anti-human P450 2D6. Carbon monoxide difference spectra indicated that the purified protein contained no denatured P450 enzyme; this allowed for further characterization of the substrates and metabolites formed by P450 2D18-mediated metabolism. ^ Because P450 2D18 is expressed in brain, we characterized the activity toward several psychoactive drugs including the antidepressants imipramine and desipramine, and the anti-psychotic drugs chlorpromazine and haloperidol. P450 2D18 preferentially catalyzed the N-demethylation of imipramine, desipramine, and chlorpromazine. This is interesting given the fact that other P450 isoforms form multiple metabolites from such compounds. This limited metabolic profile might suggest that P450 2D18 has some unique function, or perhaps a role in endobiotic metabolism. ^ Further analysis of possible endogenous substrates for P450 2D18 led to the identification of dopamine and arachidonic acid as substrates. It was shown that P450 2D18 catalyzes the oxidation of dopamine to aminochrome, and that the enzyme binds dopamine with an apparent KS value of 678 μM, a value well within reported dopamine concentration in brain dopaminergic systems. Further, it was shown that P450 2D18 binds arachidonic acid with an apparent KS value of 148 μM, and catalyzes both the ω-hydroxylation and epoxygenation of arachidonic acid to metabolites that have been shown to have vasoactive properties in brain, kidney, and heart tissues. These data provide clues for endogenous roles of P450 within the brain, and possible involvement in the pathogenesis of Parkinson's disease. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Myelosuppression is a common side effect of anticancer agents such as cisplatin. This makes patients more susceptible to infections. Gentamicin is an aminoglycoside antibiotic that is very effective in the treatment of gram negative infections. Both these drugs are excreted by the kidney, and are also nephrotoxic. Thus, each may affect the disposition of the other. This project deals with the nature and duration of the effects of cisplatin on gentamicin pharmacokinetics in F-344 rats.^ The appropriate cisplatin dose was determined by comparing the nephrotoxicity of four intravenous doses--3, 4, 5, and 6 mg/kg. The 6 mg/kg dose gave the most consistent nephrotoxic effect, with peak plasma urea nitrogen and creatinine levels on the 7th day. Plasma and tissue gentamicin levels were compared between rats given gentamicin alone (30 mg/kg, intraperitoneally, twice a day for four days), and those given cisplatin (6 mg/kg, intraperitoneally) with the first gentamicin dose. Cisplatin caused a significant elevation of gentamicin levels in plasma, liver, and spleen. However, cisplatin given in three weekly doses of 2 mg/kg each, had no effect on plasma or tissue gentamicin levels.^ In order to determine the duration of cisplatin effects, a single dose of gentamicin (30 mg/kg, intravenously) was given to different groups of rats either alone, or on day 1, 4, 7, 15, or 29 following cisplatin (6 mg/kg, intravenously on day 1). Plasma samples were collected through a cannula placed on the external jugular vein at 0.5, 1, 2, 3, 4, 5, and 6 hours after gentamicin; the rats were sacrificed at 24 hours. Cisplatin caused a significant decrease in gentamicin excretion and an elevation of gentamicin levels in plasma, kidneys, liver, and spleen at all the time points that were tested, except with concomitant administration. Plasma urea nitrogen was elevated, and creatinine clearance decreased by the 4th day after cisplatin and these continued to be significantly different even on the 29th day after cisplatin.^ These results demonstrate that cisplatin nephrotoxicity reduced gentamicin excretion for at least a month in F-344 rats. This could increase the risk of toxicity from the second drug by elevating its levels in plasma and tissue. Thus, caution should be exercised when renally excreted drugs are given after cisplatin. ^