32 resultados para Head and neck
Resumo:
Intensity modulated radiation therapy (IMRT) is a technique that delivers a highly conformal dose distribution to a target volume while attempting to maximally spare the surrounding normal tissues. IMRT is a common treatment modality used for treating head and neck (H&N) cancers, and the presence of many critical structures in this region requires accurate treatment delivery. The Radiological Physics Center (RPC) acts as both a remote and on-site quality assurance agency that credentials institutions participating in clinical trials. To date, about 30% of all IMRT participants have failed the RPC’s remote audit using the IMRT H&N phantom. The purpose of this project is to evaluate possible causes of H&N IMRT delivery errors observed by the RPC, specifically IMRT treatment plan complexity and the use of improper dosimetry data from machines that were thought to be matched but in reality were not. Eight H&N IMRT plans with a range of complexity defined by total MU (1460-3466), number of segments (54-225), and modulation complexity scores (MCS) (0.181-0.609) were created in Pinnacle v.8m. These plans were delivered to the RPC’s H&N phantom on a single Varian Clinac. One of the IMRT plans (1851 MU, 88 segments, and MCS=0.469) was equivalent to the median H&N plan from 130 previous RPC H&N phantom irradiations. This average IMRT plan was also delivered on four matched Varian Clinac machines and the dose distribution calculated using a different 6MV beam model. Radiochromic film and TLD within the phantom were used to analyze the dose profiles and absolute doses, respectively. The measured and calculated were compared to evaluate the dosimetric accuracy. All deliveries met the RPC acceptance criteria of ±7% absolute dose difference and 4 mm distance-to-agreement (DTA). Additionally, gamma index analysis was performed for all deliveries using a ±7%/4mm and ±5%/3mm criteria. Increasing the treatment plan complexity by varying the MU, number of segments, or varying the MCS resulted in no clear trend toward an increase in dosimetric error determined by the absolute dose difference, DTA, or gamma index. Varying the delivery machines as well as the beam model (use of a Clinac 6EX 6MV beam model vs. Clinac 21EX 6MV model), also did not show any clear trend towards an increased dosimetric error using the same criteria indicated above.
Resumo:
Alterations in oncogenes and tumor suppressor genes (TSGs) are considered to be critical steps in oncogenesis. Consistent deletions and loss of heterozygosity (LOH) of polymorphic markers in a determinate chromosomal fragment are known to be indicative of a closely mapping TSG. Deletion of the long arm of chromosome 7 (hchr 7) is a frequent trait in many kinds of human primary tumors. LOH was studied with an extensive set of markers on chromosome 7q in several types of human neoplasias (primary breast, prostate, colon, ovarian and head and neck carcinomas) to determine the location of a putative TSG. The extent of LOH varied depending the type of tumor studied but all the LOH curves we obtained had a peak at (C-A)$\sb{\rm n}$ microsatellite repeat D7S522 at 7q31.1 and showed a Gaussian distribution. The high incidence of LOH in all tumor types studied suggests that a TSG relevant to the development of epithelial cancers is present on the 7q31.1. To investigate whether the putative TSG is conserved in the syntenic mouse locus, we studied LOH of 30 markers along mouse chromosome 6 (mchr 6) in chemically induced squamous cell carcinomas (SCCs). Tumors were obtained from SENCAR and C57BL/6 x DBA/2 F1 females by a two-stage carcinogenesis protocol. The high incidence of LOH in the tumor types studied suggests that a TSG relevant to the development of epithelial cancers is present on mchr 6 A1. Since this segment is syntenic with the hchr 7q31, these data indicate that the putative TSG is conserved in both species. Functional evidence for the existence of a TSG in hchr 7 was obtained by microcell fusion transfer of a single hchr 7 into a murine SCC-derived cell line. Five out of seven hybrids had two to three-fold longer latency periods for in vivo tumorigenicity assays than parental cells. One of the unrepressed hybrids had a deletion in the introduced chromosome 7 involving q31.1-q31.3, confirming the LOH data. ^
Resumo:
Retinoids such as all-trans-retinoic acid (ATRA) are promising agents for cancer chemoprevention and therapy. ATRA can cause growth inhibition, induction of differentiation and apoptosis of a variety of cancer cells. These effects are thought to be mediated by nuclear retinoids receptors which are involved in ligand-dependent transcriptional activation of downstream target genes. Using differential display, we identified several retinoic acid responsive genes in the head and neck squamous carcinoma cells and lung cancer cells, including tissue type transglutaminase, cytochrome P450-related retinoic acid hydroxylase, and a novel gene, designated RAIG1. RAIG1 has two transcripts of 2.4 and 6.8 kbp, respectively, that are generated by alternative selection of polyadenylation sites. Both transcripts have the same open reading frame that encodes a protein comprised of 357 amino acid residues. The deduced RAIG1 protein sequence contains seven transmembrane domains, a signature structure of G protein-coupled receptors. RAIG1 mRNA is expressed at high level in fetal and adult lung tissues. Induction of RAIG1 expression by ATRA is rapid and dose-dependent. A fusion protein of RAIG1 and the green fluorescent protein was localized in the cell surface membrane and perinuclear vesicles in transiently transfected cells. The locus for RAIG1 gene was mapped to a region between D12S358 and D12S847 on chromosome 12p12.3-p13. Our study of the novel retinoic acid induced gene RAIG1 provide evidence for a possible interaction between retinoid and G protein signaling pathways.^ We further examined RAIG1 expression pattern in a panel of 84 cancer cell lines of different origin. The expression level varies greatly from very high to non-detectable. We selected a panel of different cancer cells to study the effects of retinoids and other differentiation agents. We observed: (1) In most cases, retinoids (including all-trans retinoic acid, 4HPR, CD437) could induce the expression of RAIG-1 in cells from cancers of the breast, colon, head and neck, lung, ovarian and prostate. (2) Compare to retinoids, butyrate is often a more potent inducer of RAIG-1 expression in many cancer cells. (3) Butyrate, Phenylacetate butyrate, (R)P-Butyrate and (S)P-Butyrate have different impact on RAIG1 expression which varies among different cell lines. Our results indicate that retinoids could restore RAIG1 expression that is down-regulated in many cancer cells.^ A mouse homologous gene, mRAIG1, was cloned by 5$\sp\prime$ RACE reaction. mRAIG1 cDNA has 2105 bp and shares 63% identity with RAIG1 cDNA. mRAIG1 encodes a polypeptide of 356 amino acid which is 76% identity with RAIG1 protein. mRAIG1 protein also has seven transmembrane domains which are structurally identical to those of RAIG1 protein. Only one 2.2 kbp mRAIG1 transcript could be detected. The mRAIG1 mRNA is also highly expressed in lung tissue. The expression of mRAIG1 gene could be induced by ATRA in several mouse embryonal carcinoma cells. The induction of mRAIG1 expression is associated with retinoic acid-induced neuroectoderm differentiation of P19 cells. Similarity in cDNA and protein sequence, secondary structure, tissue distribution and inducible expression by retinoic acid strongly suggest that the mouse gene is the homologue of the human RAIG1 gene. ^
Resumo:
Many human diseases, including cancers, result from aberrations of signal transduction pathways. The recent understanding of the molecular biochemistry of signal transduction in normal and transformed cells enable us to have a better insight about cancer and design new drugs to target this abnormal signaling in the cancer cells. Tyrosine kinase pathway plays a very important role in normal and cancer cells. Enhanced activity of tyrosine kinases has been associated with many human cancer types. Therefore, identifying the type of tyrosine kinases involved in a particular cancer type and blocking these tyrosine kinase pathways may provide a way to treat cancer. Receptor tyrosine kinase expression, namely epidermal growth factor receptor (EGFR) family, was examined in the oral squamous cell carcinoma patients. The expression levels of different members of the EGFR family were found to be significantly associated with shorter patients' survival. Combining EGFR, HER-2/neu, and HER-3 expression can significantly improve the predicting power. The effect of emodin, a tyrosine kinase inhibitor, on these receptors in head and neck squamous cell carcinoma cell lines was examined. Emodin was found to suppress the tyrosine phosphorylation of HER-2/neu and EGF-induced tyrosine phosphorylation of EGFR. Emodin also induced apoptosis and downregulated the expression of anti-apoptotic protein bcl-2 in oral squamous cell carcinoma cells. It is known that tyrosine kinase pathways are involved in estrogen receptor signaling pathway. Therefore, the effects of inhibiting the tyrosine kinase pathway in estrogen receptor-positive breast cancers was studied. Emodin was found to act similarly to antiestrogens, capable of inhibiting estrogen-stimulated growth and DNA synthesis, and the phosphorylation of Rb protein. Interestingly, emodin, and other tyrosine kinase inhibitors, such as RG 13022 and genistein, depleted cellular levels of estrogen receptor protein. Emodin-induced depletion of estrogen receptor was mediated by the proteasome degradation pathway. In summary, we have demonstrated that tyrosine kinase pathways play an important role in oral squamous cell carcinoma and estrogen receptor-positive breast cancer. Targeting the tyrosine kinases by inhibitors, such as emodin, may provide a potential way to treat the cancer patients. ^
Resumo:
Objectives. This hospital-based case-case study compared the characteristics of sexual behavior in patients with cancer of the oropharynx to patients with cancers of other head and neck sites. Additionally, the prevalence of certain sexual behaviors of HPV-16 seropositive head and neck cancer patients was compared to that of seronegative patients. ^ Methods. One hundred sixty five oropharyngeal cancer patients and 86 patients with cancers of other head and neck sites completed a sexual history questionnaire. ^ Results. Oropharyngeal cancer patients were significantly more likely to have had a greater number of lifetime sex partners, to have engaged in oral-genital sex, and to have had a greater number of oral-genital sex partners than non-oropharyngeal cancer patients. Oral-genital sex was significantly more common in the HPV-16 seropositive group. ^ Conclusion. These findings add to the evidence that HPV-16 is sexually transmitted to the upper aerodigestive tract and that certain sexual behaviors increase the risk for HPV-associated oropharyngeal cancer. ^
Resumo:
DEVELOPMENT AND IMPLEMENTATION OF A DYNAMIC HETEROGENEOUS PROTON EQUIVALENT ANTHROPOMORPHIC THORAX PHANTOM FOR THE ASSESSMENT OF SCANNED PROTON BEAM THERAPY by James Leroy Neihart, B.S. APPROVED: ______________________________David Followill, Ph.D. ______________________________Peter Balter, Ph.D. ______________________________Narayan Sahoo, Ph.D. ______________________________Kenneth Hess, Ph.D. ______________________________Paige Summers, M.S. APPROVED: ____________________________ Dean, The University of Texas Graduate School of Biomedical Sciences at Houston DEVELOPMENT AND IMPLEMENTATION OF A DYNAMIC HETEROGENEOUS PROTON EQUIVALENT ANTHROPOMORPHIC THORAX PHANTOM FOR THE ASSESSMENT OF SCANNED PROTON BEAM THERAPY A THESIS Presented to the Faculty of The University of Texas Health Science Center at Houston andThe University of TexasMD Anderson Cancer CenterGraduate School of Biomedical Sciences in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE by James Leroy Neihart, B.S. Houston, Texas Date of Graduation August, 2013 Acknowledgments I would like to acknowledge my advisory committee members, chair David Followill, Ph.D., Peter Balter, Ph.D, Narayan Sahoo, Ph.D., Kenneth Hess, Ph.D., Paige Summers M.S. and, for their time and effort contributed to this project. I would additionally like to thank the faculty and staff at the PTC-H and the RPC who assisted in many aspects of this project. Falk Pӧnisch, Ph.D. for his breath hold proton therapy treatment expertise, Matt Palmer and Jaques Bluett for proton dosimetry assistance, Matt Kerr for verification plan assistance, Carrie Amador, Nadia Hernandez, Trang Nguyen, Andrea Molineu, Lynda McDonald for TLD and film dosimetry assistance. Finally, I would like to thank my wife and family for their support and encouragement during my research and studies. Development and implementation of a dynamic heterogeneous proton equivalent anthropomorphic thorax phantom for the assessment of scanned proton beam therapy By: James Leroy Neihart, B.S. Chair of Advisory Committee: David Followill, Ph.D Proton therapy has been gaining ground recently in radiation oncology. To date, the most successful utilization of proton therapy is in head and neck cases as well as prostate cases. These tumor locations do not suffer from the resulting difficulties of treatment delivery as a result of respiratory motion. Lung tumors require either breath hold or motion tracking, neither of which have been assessed with an end-to-end phantom for proton treatments. Currently, the RPC does not have a dynamic thoracic phantom for proton therapy procedure assessment. Additionally, such a phantom could be an excellent means of assessing quality assurance of the procedures of proton therapy centers wishing to participate in clinical trials. An eventual goal of this phantom is to have a means of evaluating and auditing institutions for the ability to start clinical trials utilizing proton therapy procedures for lung cancers. Therefore, the hypothesis of this study is that a dynamic anthropomorphic thoracic phantom can be created to evaluate end-to-end proton therapy treatment procedures for lung cancer to assure agreement between the measured and calculated dose within 5% / 5 mm with a reproducibility of 2%. Multiple materials were assessed for thoracic heterogeneity equivalency. The phantom was designed from the materials found to be in greatest agreement. The phantom was treated in an end-to-end treatment four times, which included simulation, treatment planning and treatment delivery. Each treatment plan was delivered three times to assess reproducibility. The dose measured within the phantom was compared to that of the treatment plan. The hypothesis was fully supported for three of the treatment plans, but failed the reproducibility requirement for the most aggressive treatment plan.
Resumo:
The p53 gene is known to be one of the most commonly mutated genes in human cancers. Many squamous cell carcinomas of the head and neck (SCCHNs) have been shown to contain nonfunctional p53 as well. The use of p53-mediated gene therapy to treat such cancers has become an intensive area of research. Although there have been varied treatment responses to p53 gene therapy, the role that endogenous p53 status plays in this response has not been thoroughly examined. Because of this, the hypothesis of this study examined the role that the endogenous p53 status of cells plays in their response to p53 gene therapy. To test this, an adenoviral vector containing p53 (p53FAd) was administered to three squamous cell carcinoma lines with varied endogenous p53. The SCC9 cell line demonstrates no p53 protein expression, the SCC4 cell line displays overexpression of a mutant p53 protein, and the 1986LN cell line displays low to no expression of wild-type p53 protein as a consequence of human papillomavirus infection. After treatment with p53FAd, the cells were examined for evidence of exogenous p53 expression, growth suppression, alterations in cellular proteins, G1 growth arrest, apoptosis, and differentiation state. Each cell line exhibited exogenous p53 protein. Growth suppression was seen most prominently in the SCC9 cells, to some extent in the 1986LN cells, and little was seen with the SCC4 cells. WAF1/p21 protein was induced in all three cell lines, while PCNA, bcl-2, and bax expression was not significantly affected in any of the lines. Apoptosis developed first in SCC9 cells, next in 1986LN cells, with little seen in the SCC4 cells. The SCC9 line was the only line to show significant GI growth arrest. No significant differences were observed in the overall expression of differentiation markers, aside from increased keratin 13 mRNA levels in all three lines indicating a possible tendency toward differentiation. This study indicates that the endogenous p53 status of squamous cell carcinomas appears to play a critical role in determining the response to p53 adenoviral gene therapy. ^
Resumo:
Purpose: To evaluate normal tissue dose reduction in step-and-shoot intensity-modulated radiation therapy (IMRT) on the Varian 2100 platform by tracking the multileaf collimator (MLC) apertures with the accelerator jaws. Methods: Clinical radiation treatment plans for 10 thoracic, 3 pediatric and 3 head and neck patients were converted to plans with the jaws tracking each segment’s MLC apertures. Each segment was then renormalized to account for the change in collimator scatter to obtain target coverage within 1% of that in the original plan. The new plans were compared to the original plans in a commercial radiation treatment planning system (TPS). Reduction in normal tissue dose was evaluated in the new plan by using the parameters V5, V10, and V20 in the cumulative dose-volume histogram for the following structures: total lung minus GTV (gross target volume), heart, esophagus, spinal cord, liver, parotids, and brainstem. In order to validate the accuracy of our beam model, MLC transmission measurements were made and compared to those predicted by the TPS. Results: The greatest change between the original plan and new plan occurred at lower dose levels. The reduction in V20 was never more than 6.3% and was typically less than 1% for all patients. The reduction in V5 was 16.7% maximum and was typically less than 3% for all patients. The variation in normal tissue dose reduction was not predictable, and we found no clear parameters that indicated which patients would benefit most from jaw tracking. Our TPS model of MLC transmission agreed with measurements with absolute transmission differences of less than 0.1 % and thus uncertainties in the model did not contribute significantly to the uncertainty in the dose determination. Conclusion: The amount of dose reduction achieved by collimating the jaws around each MLC aperture in step-and-shoot IMRT does not appear to be clinically significant.
Resumo:
Proton radiation therapy is gaining popularity because of the unique characteristics of its dose distribution, e.g., high dose-gradient at the distal end of the percentage-depth-dose curve (known as the Bragg peak). The high dose-gradient offers the possibility of delivering high dose to the target while still sparing critical organs distal to the target. However, the high dose-gradient is a double-edged sword: a small shift of the highly conformal high-dose area can cause the target to be substantially under-dosed or the critical organs to be substantially over-dosed. Because of that, large margins are required in treatment planning to ensure adequate dose coverage of the target, which prevents us from realizing the full potential of proton beams. Therefore, it is critical to reduce uncertainties in the proton radiation therapy. One major uncertainty in a proton treatment is the range uncertainty related to the estimation of proton stopping power ratio (SPR) distribution inside a patient. The SPR distribution inside a patient is required to account for tissue heterogeneities when calculating dose distribution inside the patient. In current clinical practice, the SPR distribution inside a patient is estimated from the patient’s treatment planning computed tomography (CT) images based on the CT number-to-SPR calibration curve. The SPR derived from a single CT number carries large uncertainties in the presence of human tissue composition variations, which is the major drawback of the current SPR estimation method. We propose to solve this problem by using dual energy CT (DECT) and hypothesize that the range uncertainty can be reduced by a factor of two from currently used value of 3.5%. A MATLAB program was developed to calculate the electron density ratio (EDR) and effective atomic number (EAN) from two CT measurements of the same object. An empirical relationship was discovered between mean excitation energies and EANs existing in human body tissues. With the MATLAB program and the empirical relationship, a DECT-based method was successfully developed to derive SPRs for human body tissues (the DECT method). The DECT method is more robust against the uncertainties in human tissues compositions than the current single-CT-based method, because the DECT method incorporated both density and elemental composition information in the SPR estimation. Furthermore, we studied practical limitations of the DECT method. We found that the accuracy of the DECT method using conventional kV-kV x-ray pair is susceptible to CT number variations, which compromises the theoretical advantage of the DECT method. Our solution to this problem is to use a different x-ray pair for the DECT. The accuracy of the DECT method using different combinations of x-ray energies, i.e., the kV-kV, kV-MV and MV-MV pair, was compared using the measured imaging uncertainties for each case. The kV-MV DECT was found to be the most robust against CT number variations. In addition, we studied how uncertainties propagate through the DECT calculation, and found general principles of selecting x-ray pairs for the DECT method to minimize its sensitivity to CT number variations. The uncertainties in SPRs estimated using the kV-MV DECT were analyzed further and compared to those using the stoichiometric method. The uncertainties in SPR estimation can be divided into five categories according to their origins: the inherent uncertainty, the DECT modeling uncertainty, the CT imaging uncertainty, the uncertainty in the mean excitation energy, and SPR variation with proton energy. Additionally, human body tissues were divided into three tissue groups – low density (lung) tissues, soft tissues and bone tissues. The uncertainties were estimated separately because their uncertainties were different under each condition. An estimate of the composite range uncertainty (2s) was determined for three tumor sites – prostate, lung, and head-and-neck, by combining the uncertainty estimates of all three tissue groups, weighted by their proportions along typical beam path for each treatment site. In conclusion, the DECT method holds theoretical advantages in estimating SPRs for human tissues over the current single-CT-based method. Using existing imaging techniques, the kV-MV DECT approach was capable of reducing the range uncertainty from the currently used value of 3.5% to 1.9%-2.3%, but it is short to reach our original goal of reducing the range uncertainty by a factor of two. The dominant source of uncertainties in the kV-MV DECT was the uncertainties in CT imaging, especially in MV CT imaging. Further reduction in beam hardening effect, the impact of scatter, out-of-field object etc. would reduce the Hounsfeld Unit variations in CT imaging. The kV-MV DECT still has the potential to reduce the range uncertainty further.
Resumo:
Radioimmunotherapy (RIT) with i.v. administered radiolabeled IgG can selectively irradiate tumor cells in vivo. However, it only provides effective therapy for lymphomas. Intracompartmental RIT with radiolabeled human monoclonal IgM may allow curative treatment of solid tumors by increasing tumor deposition of radioactivity, reducing systemic toxicity and allowing repeated administration. This hypothesis was tested in nude mouse models with IgM radiolabeled with indium-111 $\rm(\sp{111}In)$ or yttrium-90 $\rm(\sp{90}Y).$ The use of two radioisotopes, $\rm\sp{111}In$ for imaging and $\rm\sp{90}Y$ for therapy, allow for more quantitative and cautious development of RIT.^ Radiolabled 2B12, an IgM reactive with human ovarian carcinomas was tested by i.v. and intraperitoneal (i.p.) administration in nude mice bearing i.p. nodules of a human ovarian carcinoma cell line (SKOV3 NMP2). Radiolabeled CR4E8, an IgM reactive with human squamous cell carcinomas was tested by i.v. and intralesional (i.l.) administration in nude mice bearing subcutaneous tumors of a human head and neck squamous cell carcinoma cell line (886). These two models were selected to test proof of concept. Radiolabeled irrelevant IgM (CH-1B9), and $\rm\sp{90}Y$-aggregate served as specificity controls. Biodistribution was performed by excising, weighing and then measuring the radioactivity of tumor and normal organs. Therapy was conducted with i.p. $\rm\sp{90}Y$-labeled 2B12 using both single and fractionated administration and with i.l. $\rm\sp{90}Y$-labeled CR4E8 using single administration. Mice were monitored for tumor response, survival and systemic toxicity.^ Intracompartmental administration of radiolabeled IgM produced immediate high and prolonged tumor deposition of radioactivity with low normal tissue uptake. In contrast, i.v. administration resulted in low tumor, but high liver and spleen uptake. Similar biodistributions were demonstrated for $\rm\sp{111}In$- and $\rm\sp{90}Y$-labeled IgM. Intraperitoneal therapy with $\rm\sp{90}Y$-labeled 2B12 increased survival by approximately 12 days for every 100 $\rm\mu Ci$ of activity without significant toxicity for single (0-300 $\rm\mu Ci)$ and fractionated (150-510 $\rm\mu Ci)$ administration. Intralesional therapy with $\rm\sp{90}Y$-labeled CR4E8 (150-400 $\rm\mu Ci)$ induced prolonged complete regressions. Significant local or systemic toxicity was not observed.^ Intracompartmental RIT with radiolabeled tumor-reactive human monoclonal IgM can selectively irradiate tumor cells. Intracompartmental radiolabled IgM can significantly extend the survival of treated mice with minimal toxicity. It deserves further development as a new cancer therapy. ^
Resumo:
Retinoids, important modulators of squamous epithelial differentiation and proliferation, are effective in the treatment and prevention of squamous epithelial cancers, including squamous cell carcinomas (SCCs) of the skin. However, the mechanism is not well understood. Retinoids exert their effects primarily through two nuclear receptor families, retinoic acid receptors (RARα, β and γ) and retinoid X receptors (RXR(α, β and γ), ligand-dependent DNA-binding transcription factors that are members of the steroid hormone receptor superfamily. Retinoid receptor loss has been correlated with squamous epithelial malignancy. This has lead to the hypothesis that reduced RARγ expression and the resulting suppression of retinoid signaling contributes to squamous epithelial malignancy. To test this hypothesis, I attempted to reduce or abolish expression of RARγ, the predominant RAR in squamous epithelia, in several nontumorigenic human squamous epithelial cell lines. The most useful of these cell lines has been SqCCY1, the human head and neck squamous cell carcinoma cell line, along with several subclones stably transfected with RARγ sense and antisense expression constructs. By several criteria, we observed an overall suppression of squamous differentiation in RARγ sense transfectants and an enhancement in RARγ antisense transfectants, relative to parental SqCCY1 cells. We also observed that both sense and antisense cells could form tumors in athymic mice in vivo, while parental SqCCY1 cells could not. Although these results appear contradictory, several conclusions can be drawn. First, loss of RARγ contributes to squamous epithelial tumorigenesis. Second, overexpression of RARγ leads to tumor formation, suppressing differentiation and promoting proliferation, possibly due to a competitive inhibition of limiting concentrations of RXRα, a common heterodimeric partner for many nuclear receptors in addition to RARs, representing a mechanism for RARγ to modulate squamous epithelial homeostasis. The cause for tumorigenesis in the two conditions is likely due to different mechanisms/roles of RARγ in the cell, with the former as a retinoid signaling regulator; and the latter as an RXRα concentration modulator. Finally, High level of RARγ expression sensitizes cells to environmental RA, enhancing RARγ/RXRα-mediated RA signaling. Therefore, RA should be used in skin lesions with suppressed RARγ expression levels, not in skin lesions with overexpressed RARγ levels. ^
Resumo:
The current standard treatment for head and neck cancer at our institution uses intensity-modulated x-ray therapy (IMRT), which improves target coverage and sparing of critical structures by delivering complex fluence patterns from a variety of beam directions to conform dose distributions to the shape of the target volume. The standard treatment for breast patients is field-in-field forward-planned IMRT, with initial tangential fields and additional reduced-weight tangents with blocking to minimize hot spots. For these treatment sites, the addition of electrons has the potential of improving target coverage and sparing of critical structures due to rapid dose falloff with depth and reduced exit dose. In this work, the use of mixed-beam therapy (MBT), i.e., combined intensity-modulated electron and x-ray beams using the x-ray multi-leaf collimator (MLC), was explored. The hypothesis of this study was that addition of intensity-modulated electron beams to existing clinical IMRT plans would produce MBT plans that were superior to the original IMRT plans for at least 50% of selected head and neck and 50% of breast cases. Dose calculations for electron beams collimated by the MLC were performed with Monte Carlo methods. An automation system was created to facilitate communication between the dose calculation engine and the treatment planning system. Energy and intensity modulation of the electron beams was accomplished by dividing the electron beams into 2x2-cm2 beamlets, which were then beam-weight optimized along with intensity-modulated x-ray beams. Treatment plans were optimized to obtain equivalent target dose coverage, and then compared with the original treatment plans. MBT treatment plans were evaluated by participating physicians with respect to target coverage, normal structure dose, and overall plan quality in comparison with original clinical plans. The physician evaluations did not support the hypothesis for either site, with MBT selected as superior in 1 out of the 15 head and neck cases (p=1) and 6 out of 18 breast cases (p=0.95). While MBT was not shown to be superior to IMRT, reductions were observed in doses to critical structures distal to the target along the electron beam direction and to non-target tissues, at the expense of target coverage and dose homogeneity. ^
Resumo:
Epidermal Growth Factor Receptor (EGFR) overexpression occurs in about 90% of Head and Neck Squamous Cell Carcinoma (HNSCC) cases. Aberrant EGFR signaling has been implicated in the malignant features of HNSCC. Thus, EGFR appears to be a logical therapeutic target with increased tumor specificity for the treatment of HNSCC. Erlotinib, a small molecule tyrosine kinase inhibitor, specifically inhibits aberrant EGFR signaling in HNSCC. Only a minority of HNSCC patients were able to derive a substantial clinical benefit from erlotinib. ^ This dissertation identifies Epithelial to Mesenchymal Transition (EMT) as the biological marker that distinguishes EGFR-dependent (erlotinib-sensitive) tumors from the EGFR-independent (erlotinib-resistant) tumors. This will allow us to prospectively identify the patients who are most likely to benefit from EGFR-directed therapy. More importantly, our data identifies the transcriptional repressor DeltaEF1 as the mesenchymal marker that controls EMT phenotype and resistance to erlotinib in human HNSCC lines. si-RNA mediated knockdown of DeltaEF1 in the erlotinib-resistant lines resulted in reversal of the mesenchymal phenotype to an epithelial phenotype and significant increase in sensitivity to erlotinib. ^ DeltaEF1 represses the expression of the epithelial markers by recruiting HDACs to chromatin. This observation allows us to translate our findings into clinical application. To test whether the transcriptional repression by DeltaEF1 underlines the mechanism responsible for erlotinib resistance, erlotinib-resistant lines were treated with an HDAC inhibitor (SAHA) followed by erlotinib. This resulted in a synergistic effect and substantial increase in sensitivity to erlotinib in the resistant cell lines. Thus, combining an HDAC inhibitor with erlotinib represents a novel promising pharmacologic strategy for reversing resistance to erlotinib in HNSCC patients. ^
Resumo:
Background. HPV is the underlying cause of cervical cancer, a malignant tumor of the female genital tract. Each year, cervical cancer is newly diagnosed in approximately 10,000 women, and over 3,000 women die from the malignancy. In addition, HPV is implicated as a cause of other cancers involving the genital tract, male and female, and the head and neck. ^ Gardasil, a vaccine against HPV, was licensed by the FDA in June 2006. Early study results have shown Gardasil to be safe and effective at preventing HPV infections that are commonly associated with the development of cervical cancer, as well as other HPV-related cancers and genital warts. The vaccine is most effective when administered in childhood, before initial exposure to HPV, which typically occurs shortly after the onset of sexual activity. Accordingly, the CDC's Advisory Committee on Immunization Practices (ACIP) has recommended routine vaccination of females aged 11-12 years. ^ Taking the ACIP recommendation one step further, many states have considered school-based mandates of the HPV vaccine in an attempt to reduce the burden of HPV-related illness, in particular to reduce the disparately high incidence of cervical cancer in medically underserved populations. These mandate attempts have sparked heated debate—highlighting public concerns regarding adolescent sexuality, corporate greed, and vaccines in general. ^ Methods. My research focuses on publicly available sources of information such as medical journals, government reports (federal and state), NGO reports, newspapers, and books. I begin with a background discussion of HPV, cervical cancer, and the HPV vaccine. I then discuss public health policy issues related to vaccines, vaccine mandates, and HPV-related illness. Specifically, I discuss the public health benefit of previous vaccine mandates, the legality of vaccine mandates, and the undue corporate influence on the politics of instituting HPV vaccine mandates. In addition, I examine some of the causes behind the anti-vaccine movement and the controversy surrounding adolescent sexuality as it pertains to the HPV vaccine. In the final section, I focus on the recent failed attempt by Governor Rick Perry to mandate the HPV vaccine in Texas. A retrospective analysis of Governor Perry's policy decisions is undertaken and recommendations are made regarding future attempts to mandate the HPV vaccine, or other vaccines under development for similar sexually transmitted viral diseases such as HIV and herpes simplex. ^ Results. In Texas, as in other states across the country, HPV vaccine mandates faced opposition from those who, while they may support mandates of other vaccines, oppose mandates for the HPV vaccine based largely on the idea that HPV is a sexually transmitted disease—they see responsible sexual behavior as the appropriate method for preventing HPV-related illness. A second major group of opposition comes from those who are generally opposed to all vaccine mandates, due to concerns that mandates are intended primarily for the financial benefit of the pharmaceutical industry or due to concerns—largely unfounded—that vaccines pose a greater health threat than the illnesses they are designed to prevent. ^ Conclusion. In order to reduce opposition to vaccine mandates, care must be taken to educate the public regarding the benefits of vaccination by mobilizing the public health sector, avoid the impression that the decision to institute mandates is rash or pressured by allowing time for open debate, and minimize lobbying efforts by vaccine manufacturers. ^
Resumo:
Few studies have explored factors related to participation in cancer chemoprevention trials. The purpose of this dissertation was to conduct investigations in this emerging field by studying aspects of participation at three phases of cancer chemoprevention trials: at enrollment, during a placebo run-in period, and post-trial. In all three studies, subjects had a history of cancer and were at high risk of recurrence or second primary tumors.^ The first study explored correlates of enrollment in a head and neck cancer chemoprevention trial by comparing participants and eligible nonparticipants. Of 148 subjects who met the trial's preliminary eligibility criteria, 40% enrolled. In multivariate analysis, enrollment was positively associated with being male (OR 2.36) and being employed (OR 2.73). The most commonly cited reason for declining participation among nonparticipants was transportation.^ The second study examined outcomes of an eight-week placebo run-in period in a head and neck cancer chemoprevention trial. Of 391 subjects, 91.3% were randomized after the run-in. Adherence to drug capsules ranged from 0% to 120.3% (mean $\pm$ SD, 95.8% $\pm$ 15.1). In multivariate analysis, the main variable predicting run-in outcome was race; white subjects were 3.45 times more likely to be randomized than non-white subjects. Subjects with Karnofsky scores of 100 were 2.13 times more likely to be randomized than were subjects with lower scores.^ The third study used post-trial questionnaires to assess subjects' (n = 64) perceptions of participation in a cancer chemoprevention trial. The most highly rated trial benefit was the perception of potential colon cancer prevention, and the most troublesome barrier was erroneous billing for study visits. Perceived benefits were positively associated with interest in participating in future trials of the same (p = 0.05) and longer (p = 0.02) duration, and difficulty with trial pills and procedures was inversely related to interest in future placebo-controlled trials (p = 0.01).^ These are among the first behavioral studies to be completed in the rapidly growing field of cancer chemoprevention. Much work has yet to be done, however, to advance our understanding of the complex issues relating to chemoprevention trial participation. ^