18 resultados para HYDROXYLASE
Resumo:
Pregnant Sprague-Dawley rats were gavaged with vehicle (olive oil) or 37.5, 75, 150 or 300 mg/kg of (DELTA)('9)-Tetrahydrocannabinol (THC) on days 18 or 19 of gestation. Male offspring as well as a group of hypophysectomized rats (positive control) were sacrificed at 35 days of age, while females and hypophysectomized control were sacrificed at 36 days of age. The sex-differences in ethylmorphine-N-demethylase and aniline hydroxylase liver activities were evaluated.^ Ethylmorphine-N-demethylase activity showed a significant difference between males and females from control and 37.5, 75 and 150 mg/kg THC dosed groups. Female offspring exposed prenatally to 300 mg/kg THC had a significant increase (p < .01) in N-demethylation activity, while their male counterparts had similar enzyme activity to those found in the male groups from control and 37.5 to 150 mg/kg THC dosed. Moreover, the percent increase in the 300 mg/kg THC dosed females was similar to that detected in the hypophysectomized female rats (positive control). As expected no sex difference in aniline hydroxylase activity was detected in control as well as exposed groups, including the 300 mg/kg THC dosed group.^ It is concluded that (DELTA)('9)-Tetrahydrocannabinol administered once by gavage in days 18 or 19 of gestation alters the liver Mixed Function Oxidase (MFO) sexual dimorphism imprinting process of the rat. ^
Resumo:
Mechanisms that allow pathogens to colonize the host are not the product of isolated genes, but instead emerge from the concerted operation of regulatory networks. Therefore, identifying components and the systemic behavior of networks is necessary to a better understanding of gene regulation and pathogenesis. To this end, I have developed systems biology approaches to study transcriptional and post-transcriptional gene regulation in bacteria, with an emphasis in the human pathogen Mycobacterium tuberculosis (Mtb). First, I developed a network response method to identify parts of the Mtb global transcriptional regulatory network utilized by the pathogen to counteract phagosomal stresses and survive within resting macrophages. As a result, the method unveiled transcriptional regulators and associated regulons utilized by Mtb to establish a successful infection of macrophages throughout the first 14 days of infection. Additionally, this network-based analysis identified the production of Fe-S proteins coupled to lipid metabolism through the alkane hydroxylase complex as a possible strategy employed by Mtb to survive in the host. Second, I developed a network inference method to infer the small non-coding RNA (sRNA) regulatory network in Mtb. The method identifies sRNA-mRNA interactions by integrating a priori knowledge of possible binding sites with structure-driven identification of binding sites. The reconstructed network was useful to predict functional roles for the multitude of sRNAs recently discovered in the pathogen, being that several sRNAs were postulated to be involved in virulence-related processes. Finally, I applied a combined experimental and computational approach to study post-transcriptional repression mediated by small non-coding RNAs in bacteria. Specifically, a probabilistic ranking methodology termed rank-conciliation was developed to infer sRNA-mRNA interactions based on multiple types of data. The method was shown to improve target prediction in Escherichia coli, and therefore is useful to prioritize candidate targets for experimental validation.
Resumo:
A colony of rabbits has been developed at the University of Texas Medical School at Houston that is resistant to dietary-induced hypercholesterolemia. The liver of resistant rabbits had higher levels of ($\sp{125}$I) $\beta$-VLDL binding and 3-hydroxy-3-methylglutaryl (HMGCoA) reductase activity, but lower acyl coenzyme A:cholesterol acyltransferase (ACAT) activity than normal rabbits. Direct quantitation of intracellular cholesterol content of the liver revealed that the resistant rabbits had $<$10% of the intracellular free cholesterol present in normal rabbits. Fibroblasts isolated from normal and resistant rabbits exhibited differences in ($\sp{125}$I) LDL binding, HMGCoA reductase activity and ACAT activity that were similar to those found in the liver. No structural differences were found in the LDL receptor of normal and resistant fibroblasts that would account for the increased binding capacity of the resistant cells. The regulation of LDL receptor levels by exogenous oxygenated sterols was similar in normal and resistant fibroblasts. The regulation of LDL receptor binding capacity by LDL was attenuated in the resistant compared to normal fibroblasts, suggesting that the resistant fibroblasts have an alternate pathway for processing lipoprotein-derived cholesterol. Sterol-balance studies revealed that the cholesterol-fed resistant rabbits increased lithocholic acid excretion compared to the basal state, and had higher levels of deoxycholic acid excretion than cholesterol-fed normal rabbits. In addition, the specific activity and mRNA levels of cholesterol 7$\alpha$-hydroxylase (C7$\alpha$H) were higher in resistant rabbits than normal rabbits, suggesting that the increased bile acid excretion was due to an increase in bile acid synthesis. Increased clearance of cholesterol relieves the negative feedback inhibition cholesterol exerts on expression of the LDL receptor. The number of cell surface LDL receptors is then increased in resistant rabbits and allows rapid clearance of lipoproteins from the plasma compartment, thereby reducing plasma cholesterol levels. The low intracellular cholesterol level also relieves the negative feedback inhibition cholesterol exerts on HMGCoA reductase. Increased synthesis of cholesterol from acetate provides cells with cholesterol for bile acid synthesis and/or homeostasis. The activity of ACAT is then decreased due to the flux of cholesterol through the bile acid synthetic pathways. ^