18 resultados para HEIDELBERG-RETINA-TOMOGRAPH
Resumo:
Retinal detachment is a common ophthalmologic procedure, and outcome is typically measured by a single factor-improvement in visual acuity. Health related functional outcome testing, which quantifies patient's self-reported perception of impairment, can be integrated with objective clinical findings. Based on the patient's self-assessed lifestyle impairment, the physician and patient together can make an informed decision on the treatment that is most likely to benefit the patient. ^ A functional outcome test (the Houston Vision Assessment Test-Retina; HVAT-Retina) was developed and validated in patients with multiple retinal detachments in the same eye. The HVAT-Retina divides an estimated total impairment into subcomponents: contribution of visual disability (potentially correctable by retinal detachment surgery) and nonvisual physical disabilities (co-morbidities not affected by retinal detachment surgery. ^ Seventy-six patients participated in this prospective multicenter study. Seven patients were excluded from the analysis because they were not certain of their answers. Cronbach's alpha coefficient was 0.91 for presurgery HVAT-Retina and 0.94 post-surgery. The item-to-total correlation ranged from 0.50 to 0.88. Visual impairment score improved by 9 points from pre-surgery (p = 0.0003). Physical impairment score also improved from pre-surgery (p = 0.0002). ^ In conclusion, the results of this study demonstrate that the instrument is reliable and valid in patients presenting with recurrent retinal detachments. The HVAT-Retina is a simple instrument and does not burden the patient or the health professional in terms of time or cost. It may be self-administrated, not requiring an interviewer. Because the HVAT-Retina was designed to demonstrate outcomes perceivable by the patient, it has the potential to guide the decision making process between patient and physician. ^
Resumo:
The retina is a specialized neuronal structure that transforms the optical image into electrical signals which are transmitted to the brain via the optic nerve. As part of the strategy to cover a stimulus range as broad as 10 log units, from dim starlight to bright sunlight, retinal circuits are broadly divided into rod and cone pathways, responsible for dark and light-adapted vision, respectively. ^ In this dissertation, confocal microscopy and immunocytochemical methods were combined to study the synaptic connectivity of the rod pathway from the level of individual synapses to whole populations of neurons. The study was focused on synaptic interactions at the rod bipolar terminal. The purpose is to understand the synaptic structure of the dyad synapse made by rod bipolar terminals, including the synaptic components and connections, and their physiological functions in the rod pathway. In addition, some additional components and connections of the rod pathway were also studied in these experiments. The major results can be summarized as following: At the dyad synapse of rod bipolar terminals, three postsynaptic components—processes of All amacrine cells and the varicosities of S1 or S2 amacrine cells express different glutamate receptor subunits, which may underlie the functional diversity of these postsynaptic neurons. A reciprocal feedback system is formed by rod bipolar terminals and S1/S2 amacrine cells. Analysis showed these two wide-field GABA amacrine cells have stereotyped synaptic connections with the appropriate morphology and distribution to perform specific functions. In addition, S1 and S2 cells have different coupling patterns and, in general, there is no coupling between the two types. Besides the classic rod pathway though rod bipolar cells and All amacrine cells, the finding of direct connections between certain types of OFF cone bipolar cells and rods indicates the presence of an alternative rod pathway in the rabbit retina. ^ In summary, this dissertation presents a detailed view of the connection and receptors at rod bipolar terminals. Based on the morphology, distribution and coupling, different functional roles were identified for S1 and S2 amacrine cells. Finally, an alternative to the classic rod pathway was found in the rabbit retina. ^
Resumo:
Many neurons in the mammalian retina are electrically coupled by intercellular channels or gap junctions, which are assembled from a family of proteins called connexins. Numerous studies indicate that gap junctions differ in properties such as conductance and tracer permeability. For example, A-type horizontal cell gap junctions are permeable to Lucifer Yellow, but B-type horizontal cell gap junctions are not. This suggests the two cell types express different connexins. My hypothesis is that multiple neuronal connexins are expressed in the mammalian retina in a cell type specific manner. Immunohistochemical techniques and confocal microscopy were used to localize certain connexins within well-defined neuronal circuits. The results of this study can be summarized as follows: AII amacrine cells, which receive direct input from rod bipolar cells, are well-coupled to neighboring AIIs. In addition, AII amacrine cells also form gap junctions with ON cone bipolar cells. This is a complex heterocellular network. In both rabbit and primate retina, connexin36 occurs at dendritic crossings in the AII matrix as well as between AIIs and ON cone bipolar cells. Coupling in the AII network is thought to reduce noise in the rod pathway while AII/bipolar gap junctions are required for the transmission of rod signals to ON ganglion cells. In the outer plexiform layer, connexin36 forms gap junctions between cones and between rods and cones via cone telodendria. Cone to cone coupling is thought to reduce noise and is partly color selective. Rod to cone coupling forms an alternative rod pathway thought to operate at intermediate light intensity. A-type horizontal cells in the rabbit retina are strongly coupled via massive low resistance gap junctions composed from Cx50. Coupling dramatically extends the receptive field of horizontal cells and the modulation of coupling is thought to change the strength of the feedback signal from horizontal cells to cones. Finally, there are other coupled networks, such as B-type horizontal cells and S1/S2 amacrine cells, which do not use either connexin36 or Cx50. These results confirm the hypothesis that multiple neuronal connexins are expressed in the mammalian retina and these connexins are localized to particular retinal circuits. ^