34 resultados para Gram positive bacterium


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Infective endocarditis due to vancomycin-resistant (VR) Enterococcus faecalis has only rarely been reported. We report a case of VR E. faecalis endocarditis that failed to respond to linezolid therapy, outline the virulence traits of the isolate, and review previously published cases of VR E. faecalis endocarditis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fusobacterium nucleatum is a prominent member of the oral microbiota and is a common cause of human infection. F. nucleatum includes five subspecies: polymorphum, nucleatum, vincentii, fusiforme, and animalis. F. nucleatum subsp. polymorphum ATCC 10953 has been well characterized phenotypically and, in contrast to previously sequenced strains, is amenable to gene transfer. We sequenced and annotated the 2,429,698 bp genome of F. nucleatum subsp. polymorphum ATCC 10953. Plasmid pFN3 from the strain was also sequenced and analyzed. When compared to the other two available fusobacterial genomes (F. nucleatum subsp. nucleatum, and F. nucleatum subsp. vincentii) 627 open reading frames unique to F. nucleatum subsp. polymorphum ATCC 10953 were identified. A large percentage of these mapped within one of 28 regions or islands containing five or more genes. Seventeen percent of the clustered proteins that demonstrated similarity were most similar to proteins from the clostridia, with others being most similar to proteins from other gram-positive organisms such as Bacillus and Streptococcus. A ten kilobase region homologous to the Salmonella typhimurium propanediol utilization locus was identified, as was a prophage and integrated conjugal plasmid. The genome contains five composite ribozyme/transposons, similar to the CdISt IStrons described in Clostridium difficile. IStrons are not present in the other fusobacterial genomes. These findings indicate that F. nucleatum subsp. polymorphum is proficient at horizontal gene transfer and that exchange with the Firmicutes, particularly the Clostridia, is common.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Deletion mutants of the two sortase genes of Enterococcus faecalis OG1RF were constructed. srtC (renamed here bps for biofilm and pilus-associated sortase) was previously shown to be necessary for the production of Ebp pili and important for biofilm formation and endocarditis. Here, we report that a srtA deletion mutant showed a small (5%) yet significant (P = 0.037) reduction in biofilm relative to OG1RF, while a DeltasrtA Deltabps double mutant showed a much greater reduction (74% versus OG1RF and 44% versus the Deltabps mutant). In a murine urinary tract infection (UTI), the 50% infective doses of both the DeltasrtA Deltabps and Deltabps mutants were approximately 2 log10 greater than that of OG1RF or the DeltasrtA mutant. Similarly, approximately 2 log10 fewer bacteria were recovered from the kidneys after infection with the Deltabps mutant (P = 0.017) and the DeltasrtA Deltabps double mutant (P = 0.022) compared to wild-type strain OG1RF. In a competition UTI, the Deltabps mutant was slightly, but not significantly, less attenuated than the DeltasrtA Deltabps double mutant. Fluorescence-activated cell sorter analysis with Ebp-specific antibodies confirmed that a minority of OG1RF cells express Ebp pili on their surface in vitro and that Bps has a major role in Ebp pilus biogenesis but also indicated a function for SrtA in surface localization of the pilus subunit protein EbpA. In conclusion, deletion of bps had a major effect on virulence in murine UTIs, as well as biofilm; deletion of srtA from OG1RF had little effect on these phenotypes, but its deletion from a bps mutant had a pronounced effect on biofilm, suggesting that Bps and/or the proteins it anchors may compensate for the loss of some SrtA function(s).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Deletion mutants of the two sortase genes of Enterococcus faecalis OG1RF were constructed. srtC (renamed here bps for biofilm and pilus-associated sortase) was previously shown to be necessary for the production of Ebp pili and important for biofilm formation and endocarditis. Here, we report that a srtA deletion mutant showed a small (5%) yet significant (P = 0.037) reduction in biofilm relative to OG1RF, while a DeltasrtA Deltabps double mutant showed a much greater reduction (74% versus OG1RF and 44% versus the Deltabps mutant). In a murine urinary tract infection (UTI), the 50% infective doses of both the DeltasrtA Deltabps and Deltabps mutants were approximately 2 log10 greater than that of OG1RF or the DeltasrtA mutant. Similarly, approximately 2 log10 fewer bacteria were recovered from the kidneys after infection with the Deltabps mutant (P = 0.017) and the DeltasrtA Deltabps double mutant (P = 0.022) compared to wild-type strain OG1RF. In a competition UTI, the Deltabps mutant was slightly, but not significantly, less attenuated than the DeltasrtA Deltabps double mutant. Fluorescence-activated cell sorter analysis with Ebp-specific antibodies confirmed that a minority of OG1RF cells express Ebp pili on their surface in vitro and that Bps has a major role in Ebp pilus biogenesis but also indicated a function for SrtA in surface localization of the pilus subunit protein EbpA. In conclusion, deletion of bps had a major effect on virulence in murine UTIs, as well as biofilm; deletion of srtA from OG1RF had little effect on these phenotypes, but its deletion from a bps mutant had a pronounced effect on biofilm, suggesting that Bps and/or the proteins it anchors may compensate for the loss of some SrtA function(s).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pili in Gram-positive bacteria play a major role in the colonization of host tissue and in the development of biofilms. They are promising candidates for vaccines or drug targets since they are highly immunogenic and share common structural and functional features among various Gram-positive pathogens. Numerous publications have helped build a detailed understanding of pilus surface assembly, yet regulation of pilin gene expression has not been well defined. Utilizing a monoclonal antibody developed against the Enterococcus faecalis major pilus protein EbpC, we identified mutants from a transposon (Tn) insertion library which lack surface-exposed Ebp pili. In addition to insertions in the ebp regulon, an insertion in ef1184 (dapA) significantly reduced levels of EbpC. Analysis of in-frame dapA deletion mutants and mutants with the downstream gene rnjB deleted further demonstrated that rnjB was responsible for the deficiency of EbpC. Sequence analysis revealed that rnjB encodes a putative RNase J2. Subsequent quantitative real-time PCR (qRT-PCR) and Northern blotting demonstrated that the ebpABC mRNA transcript level was significantly decreased in the rnjB deletion mutant. In addition, using a reporter gene assay, we confirmed that rnjB affects the expression of the ebpABC operon. Functionally, the rnjB deletion mutant was attenuated in its ability to produce biofilm, similar to that of an ebpABC deletion mutant which lacks Ebp pili. Together, these results demonstrate the involvement of rnjB in E. faecalis pilin gene expression and provide insight into a novel mechanism of regulation of pilus production in Gram-positive pathogens.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Type IV secretion systems (T4SS) translocate DNA and protein substrates across prokaryotic cell envelopes generally by a mechanism requiring direct contact with a target cell. Three types of T4SS have been described: (i) conjugation systems, operationally defined as machines that translocate DNA substrates intercellularly by a contact-dependent process; (ii) effector translocator systems, functioning to deliver proteins or other macromolecules to eukaryotic target cells; and (iii) DNA release/uptake systems, which translocate DNA to or from the extracellular milieu. Studies of a few paradigmatic systems, notably the conjugation systems of plasmids F, R388, RP4, and pKM101 and the Agrobacterium tumefaciens VirB/VirD4 system, have supplied important insights into the structure, function, and mechanism of action of type IV secretion machines. Information on these systems is updated, with emphasis on recent exciting structural advances. An underappreciated feature of T4SS, most notably of the conjugation subfamily, is that they are widely distributed among many species of gram-negative and -positive bacteria, wall-less bacteria, and the Archaea. Conjugation-mediated lateral gene transfer has shaped the genomes of most if not all prokaryotes over evolutionary time and also contributed in the short term to the dissemination of antibiotic resistance and other virulence traits among medically important pathogens. How have these machines adapted to function across envelopes of distantly related microorganisms? A survey of T4SS functioning in phylogenetically diverse species highlights the biological complexity of these translocation systems and identifies common mechanistic themes as well as novel adaptations for specialized purposes relating to the modulation of the donor-target cell interaction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Type IV secretion systems (T4SS) translocate DNA and protein substrates across prokaryotic cell envelopes generally by a mechanism requiring direct contact with a target cell. Three types of T4SS have been described: (i) conjugation systems, operationally defined as machines that translocate DNA substrates intercellularly by a contact-dependent process; (ii) effector translocator systems, functioning to deliver proteins or other macromolecules to eukaryotic target cells; and (iii) DNA release/uptake systems, which translocate DNA to or from the extracellular milieu. Studies of a few paradigmatic systems, notably the conjugation systems of plasmids F, R388, RP4, and pKM101 and the Agrobacterium tumefaciens VirB/VirD4 system, have supplied important insights into the structure, function, and mechanism of action of type IV secretion machines. Information on these systems is updated, with emphasis on recent exciting structural advances. An underappreciated feature of T4SS, most notably of the conjugation subfamily, is that they are widely distributed among many species of gram-negative and -positive bacteria, wall-less bacteria, and the Archaea. Conjugation-mediated lateral gene transfer has shaped the genomes of most if not all prokaryotes over evolutionary time and also contributed in the short term to the dissemination of antibiotic resistance and other virulence traits among medically important pathogens. How have these machines adapted to function across envelopes of distantly related microorganisms? A survey of T4SS functioning in phylogenetically diverse species highlights the biological complexity of these translocation systems and identifies common mechanistic themes as well as novel adaptations for specialized purposes relating to the modulation of the donor-target cell interaction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study, we present a trilocus sequence typing (TLST) scheme based on intragenic regions of two antigenic genes, ace and salA (encoding a collagen/laminin adhesin and a cell wall-associated antigen, respectively), and a gene associated with antibiotic resistance, lsa (encoding a putative ABC transporter), for subspecies differentiation of Enterococcus faecalis. Each of the alleles was analyzed using 50 E. faecalis isolates representing 42 diverse multilocus sequence types (ST(M); based on seven housekeeping genes) and four groups of clonally linked (by pulsed-field gel electrophoresis [PFGE]) isolates. The allelic profiles and/or concatenated sequences of the three genes agreed with multilocus sequence typing (MLST) results for typing of 49 of the 50 isolates; in addition to the one exception, two isolates were found to have identical TLST types but were single-locus variants (differing by a single nucleotide) by MLST and were therefore also classified as clonally related by MLST. TLST was also comparable to PFGE for establishing short-term epidemiological relationships, typing all isolates classified as clonally related by PFGE with the same type. TLST was then applied to representative isolates (of each PFGE subtype and isolation year) of a collection of 48 hospital isolates and demonstrated the same relationships between isolates of an outbreak strain as those found by MLST and PFGE. In conclusion, the TLST scheme described here was shown to be successful for investigating short-term epidemiology in a hospital setting and may provide an alternative to MLST for discriminating isolates.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pathogenic streptococci and enterococci primarily rely on the conserved secretory (Sec) pathway for the translocation and secretion of virulence factors out of the cell. Since many secreted virulence factors in gram-positive organisms are subsequently attached to the bacterial cell surface via sortase enzymes, we sought to investigate the spatial relationship between secretion and cell wall attachment in Enterococcus faecalis. We discovered that sortase A (SrtA) and sortase C (SrtC) are colocalized with SecA at single foci in the enterococcus. The SrtA-processed substrate aggregation substance accumulated in single foci when SrtA was deleted, implying a single site of secretion for these proteins. Furthermore, in the absence of the pilus-polymerizing SrtC, pilin subunits also accumulate in single foci. Proteins that localized to single foci in E. faecalis were found to share a positively charged domain flanking a transmembrane helix. Mutation or deletion of this domain in SrtC abolished both its retention at single foci and its function in efficient pilus assembly. We conclude that this positively charged domain can act as a localization retention signal for the focal compartmentalization of membrane proteins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Linezolid, which targets the ribosome, is a new synthetic antibiotic that is used for treatment of infections caused by Gram-positive pathogens. Clinical resistance to linezolid, so far, has been developing only slowly and has involved exclusively target site mutations. We have discovered that linezolid resistance in a methicillin-resistant Staphylococcus aureus hospital strain from Colombia is determined by the presence of the cfr gene whose product, Cfr methyltransferase, modifies adenosine at position 2503 in 23S rRNA in the large ribosomal subunit. The molecular model of the linezolid-ribosome complex reveals localization of A2503 within the drug binding site. The natural function of cfr likely involves protection against natural antibiotics whose site of action overlaps that of linezolid. In the chromosome of the clinical strain, cfr is linked to ermB, a gene responsible for dimethylation of A2058 in 23S rRNA. Coexpression of these two genes confers resistance to all the clinically relevant antibiotics that target the large ribosomal subunit. The association of the ermB/cfr operon with transposon and plasmid genetic elements indicates its possible mobile nature. This is the first example of clinical resistance to the synthetic drug linezolid which involves a natural resistance gene with the capability of disseminating among Gram-positive pathogenic strains.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ceftobiprole (BAL9141) is an investigational cephalosporin with broad in vitro activity against gram-positive cocci, including enterococci. Ceftobiprole MICs were determined for 93 isolates of Enterococcus faecalis (including 16 beta-lactamase [Bla] producers and 17 vancomycin-resistant isolates) by an agar dilution method following the Clinical and Laboratory Standards Institute recommendations. Ceftobiprole MICs were also determined with a high inoculum concentration (10(7) CFU/ml) for a subset of five Bla producers belonging to different previously characterized clones by a broth dilution method. Time-kill and synergism studies (with either streptomycin or gentamicin) were performed with two beta-lactamase-producing isolates (TX0630 and TX5070) and two vancomycin-resistant isolates (TX2484 [VanB] and TX2784 [VanA]). The MICs of ceftobiprole for 50 and 90% of the isolates tested were 0.25 and 1 microg/ml, respectively. All Bla producers and vancomycin-resistant isolates were inhibited by concentrations of

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is widely accepted that the emergence of drug-resistant pathogens is the result of the overuse and misuse of antibiotics. Infectious Disease Society of America, Center for Disease Control and World Health Organization continue to view, with concern, the lack of antibiotics in development, especially those against Gram-negative bacteria. Antimicrobial peptides (AMPs) have been proposed as an alternative to antibiotics due to their selective activity against microbes and minor ability to induce resistance. For example, the Food and Drug Administration approved Daptomycin (DAP) in 2003 for treatment of severe skin infections caused by susceptible Gram-positive organisms. Currently, there are 12 to 15 examples of modified natural and synthetic AMPs in clinical development. But most of these agents are against Gram-positive bacteria. Therefore, there is unmet medical need for antimicrobials used to treat infections caused by Gram-negative bacteria. In this study, we show that a pro-apoptotic peptide predominantly used in cancer therapy, (KLAKLAK)2, is an effective antimicrobial against Gram-negative laboratory strains and clinical isolates. Despite the therapeutic promise, AMPs development is hindered by their susceptibility to proteolysis. Here, we demonstrate that an all-D enantiomer of (KLAKLAK)2, resistant to proteolysis, retains its activity against Gram-negative pathogens. In addition, we have elucidated the specific site and mechanism of action of D(KLAKLAK)2 through a repertoire of whole-cell and membrane-model assays. Although it is considered that development of resistance does not represent an obstacle for AMPs clinical development, strains with decreased susceptibility to these compounds have been reported. Staphylococci resistance to DAP was observed soon after its approval for use and has been linked to alterations of the cell wall (CW) and cellular membrane (CM) properties. Immediately following staphylococcal resistance, Enterococci resistance to DAP was seen, yet the mechanism of resistance in enterococci remains unknown. Our findings demonstrate that, similar to S. aureus, development of DAP-resistance in a vancomycin-resistant E. faecalis isolate is associated with alterations of the CW and properties of the CM. However, the genes linked to these changes in enterococci appear to be different from those described in S. aureus.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Genomic libraries of two Enterococcus faecalis strains, OG1RF and TX52 (an isolate from an endocarditis patient), were constructed in Escherichia coli and were screened with serum from a rabbit immunized with surface proteins of an E. faecalis endocarditis isolate and sera from four patients with enterococcal endocarditis. Thirty-eight immunopositive cosmid clones reacted with at least two of the patient sera and contained distinct inserts based on their DNA restriction patterns. These were chosen for further subcloning in a pBluescript SK ($-$) vector. Each sublibrary was screened with one of the five sera. Analysis of sequences from the immunopositive subclones revealed similarities to a range of proteins, including bacterial virulence factors, transporters, two-component regulators, metabolic enzymes, and membrane or cell surface proteins. Fourteen subclones did not show significant similarity to any sequence in the databases and may contain novel genes. Thirteen of the immunopositive cosmid clones did not yield immunopositive subclones and one such cosmid clone, TX5159, produced an antigenic polysaccharide in Escherichia coli. The insert of TX5159 was found to contain a multicistronic gene cluster containing genes similar to those involved in the biosynthesis and export of polysaccharides from both Gram-positive and Gram-negative organisms. Insertions in several genes within the cluster abolished the immunoreactivity of TX5159. RT-PCR of genes within the cluster with total RNA from OG1RF showed that these genes are transcribed. The polysaccharide was detected in two recently reported E. faecalis mucoid strains using specific antibody, but not in the other strains tested. This is the first report on a gene cluster of E. faecalis involved in the biosynthesis of an antigenic polysaccharide. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A CDP-diacylglycerol dependent phosphatidylserine synthase was detected in three species of gram-positive bacilli, viz. Bacillus licheniformis, Bacillus subtilis and Bacillus megaterium; the enzyme in B. licheniformis was studied in detail. The subcellular distribution experiments in cell-free extracts of B. licheniformis using differential centrifugation, sucrose gradient centrifugation and detergent solubilization showed the phosphatidylserine synthase to be tightly associated with the membrane. The enzyme was shown to have an absolute requirement for divalent metal ion for activity with a strong preference for manganese. The enzyme activity was completely dependent upon the addition of CDP-diacylglycerol to the assay system; the role of the liponucleotide was rigorously shown to be that of phosphatidyl donor and not just a detergent-like stimulator. This enzyme was then solubilized from B. licheniformis membranes and purified to near homogeneity. The purification procedure consisted of CDP-diacylglycerol-Sepharose affinity chromatography followed by substrate elution from blue-dextran Sepharose. The purified preparation showed a single band with an apparent minimum molecular weight of 53,000 when subjected to SDS polyacrylamide gel electrophoresis. The preparation was free of any phosphatidylglycerophosphate synthase, CDP-diacylglycerol hydrolase and phosphatidylserine hydrolase activities. The utilization of substrates and formation of products occurred with the expected stoichiometry. Radioisotopic exchange patterns between related substrate and product pairs suggest a sequential BiBi reaction as opposed to the ping-pong mechanism exhibited by the well studied phosphatidylserine synthase of Escherichia coli. Proteolytic digestion of the enzyme yielded a smaller active form of the enzyme (41,000 daltons) which appears to be less prone to aggregation.^ This has been the first detailed study in a well-defined bacillus species of the enzyme catalyzing the CDP-diacylglycerol-dependent formation of phosphatidylserine; this reaction is the first committed step in the biosynthetic pathway to the major membrane component, phosphatidylethanolamine. Further study of this enzyme may lead to understanding of new mechanisms of phosphatidyl transfer and novel modes of control of phospholipid biosynthetic enzymes. ^