19 resultados para Gear efficiency and gear selectivity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Applying Theoretical Constructs to Address Medical Uncertainty Situations involving medical reasoning usually include some level of medical uncertainty. Despite the identification of shared decision-making (SDM) as an effective technique, it has been observed that the likelihood of physicians and patients engaging in shared decision making is lower in those situations where it is most needed; specifically in circumstances of medical uncertainty. Having identified shared decision making as an effective, yet often a neglected approach to resolving a lack of information exchange in situations involving medical uncertainty, the next step is to determine the way(s) in which SDM can be integrated and the supplemental processes that may facilitate its integration. SDM involves unique types of communication and relationships between patients and physicians. Therefore, it is necessary to further understand and incorporate human behavioral elements - in particular, behavioral intent - in order to successfully identify and realize the potential benefits of SDM. This paper discusses the background and potential interaction between the theories of shared decision-making, medical uncertainty, and behavioral intent. Identifying Shared Decision-Making Elements in Medical Encounters Dealing with Uncertainty A recent summary of the state of medical knowledge in the U.S. reported that nearly half (47%) of all treatments were of unknown effectiveness, and an additional 7% involved an uncertain tradeoff between benefits and harms. Shared decision-making (SDM) was identified as an effective technique for managing uncertainty when two or more parties were involved. In order to understand which of the elements of SDM are used most frequently and effectively, it is necessary to identify these key elements, and understand how these elements related to each other and the SDM process. The elements identified through the course of the present research were selected from basic principles of the SDM model and the “Data, Information, Knowledge, Wisdom” (DIKW) Hierarchy. The goal of this ethnographic research was to identify which common elements of shared decision-making patients are most often observed applying in the medical encounter. The results of the present study facilitated the understanding of which elements patients were more likely to exhibit during a primary care medical encounter, as well as determining variables of interest leading to more successful shared decision-making practices between patients and their physicians. Understanding Behavioral Intent to Participate in Shared Decision-Making in Medically Uncertain Situations Objective: This article describes the process undertaken to identify and validate behavioral and normative beliefs and behavioral intent of men between the ages of 45-70 with regard to participating in shared decision-making in medically uncertain situations. This article also discusses the preliminary results of the aforementioned processes and explores potential future uses of this information which may facilitate greater understanding, efficiency and effectiveness of doctor-patient consultations.Design: Qualitative Study using deductive content analysisSetting: Individual semi-structure patient interviews were conducted until data saturation was reached. Researchers read the transcripts and developed a list of codes.Subjects: 25 subjects drawn from the Philadelphia community.Measurements: Qualitative indicators were developed to measure respondents’ experiences and beliefs related to behavioral intent to participate in shared decision-making during medical uncertainty. Subjects were also asked to complete the Krantz Health Opinion Survey as a method of triangulation.Results: Several factors were repeatedly described by respondents as being essential to participate in shared decision-making in medical uncertainty. These factors included past experience with medical uncertainty, an individual’s personality, and the relationship between the patient and his physician.Conclusions: The findings of this study led to the development of a category framework that helped understand an individual’s needs and motivational factors in their intent to participate in shared decision-making. The three main categories include 1) an individual’s representation of medically uncertainty, 2) how the individual copes with medical uncertainty, and 3) the individual’s behavioral intent to seek information and participate in shared decision-making during times of medically uncertain situations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complex diseases such as cancer result from multiple genetic changes and environmental exposures. Due to the rapid development of genotyping and sequencing technologies, we are now able to more accurately assess causal effects of many genetic and environmental factors. Genome-wide association studies have been able to localize many causal genetic variants predisposing to certain diseases. However, these studies only explain a small portion of variations in the heritability of diseases. More advanced statistical models are urgently needed to identify and characterize some additional genetic and environmental factors and their interactions, which will enable us to better understand the causes of complex diseases. In the past decade, thanks to the increasing computational capabilities and novel statistical developments, Bayesian methods have been widely applied in the genetics/genomics researches and demonstrating superiority over some regular approaches in certain research areas. Gene-environment and gene-gene interaction studies are among the areas where Bayesian methods may fully exert its functionalities and advantages. This dissertation focuses on developing new Bayesian statistical methods for data analysis with complex gene-environment and gene-gene interactions, as well as extending some existing methods for gene-environment interactions to other related areas. It includes three sections: (1) Deriving the Bayesian variable selection framework for the hierarchical gene-environment and gene-gene interactions; (2) Developing the Bayesian Natural and Orthogonal Interaction (NOIA) models for gene-environment interactions; and (3) extending the applications of two Bayesian statistical methods which were developed for gene-environment interaction studies, to other related types of studies such as adaptive borrowing historical data. We propose a Bayesian hierarchical mixture model framework that allows us to investigate the genetic and environmental effects, gene by gene interactions (epistasis) and gene by environment interactions in the same model. It is well known that, in many practical situations, there exists a natural hierarchical structure between the main effects and interactions in the linear model. Here we propose a model that incorporates this hierarchical structure into the Bayesian mixture model, such that the irrelevant interaction effects can be removed more efficiently, resulting in more robust, parsimonious and powerful models. We evaluate both of the 'strong hierarchical' and 'weak hierarchical' models, which specify that both or one of the main effects between interacting factors must be present for the interactions to be included in the model. The extensive simulation results show that the proposed strong and weak hierarchical mixture models control the proportion of false positive discoveries and yield a powerful approach to identify the predisposing main effects and interactions in the studies with complex gene-environment and gene-gene interactions. We also compare these two models with the 'independent' model that does not impose this hierarchical constraint and observe their superior performances in most of the considered situations. The proposed models are implemented in the real data analysis of gene and environment interactions in the cases of lung cancer and cutaneous melanoma case-control studies. The Bayesian statistical models enjoy the properties of being allowed to incorporate useful prior information in the modeling process. Moreover, the Bayesian mixture model outperforms the multivariate logistic model in terms of the performances on the parameter estimation and variable selection in most cases. Our proposed models hold the hierarchical constraints, that further improve the Bayesian mixture model by reducing the proportion of false positive findings among the identified interactions and successfully identifying the reported associations. This is practically appealing for the study of investigating the causal factors from a moderate number of candidate genetic and environmental factors along with a relatively large number of interactions. The natural and orthogonal interaction (NOIA) models of genetic effects have previously been developed to provide an analysis framework, by which the estimates of effects for a quantitative trait are statistically orthogonal regardless of the existence of Hardy-Weinberg Equilibrium (HWE) within loci. Ma et al. (2012) recently developed a NOIA model for the gene-environment interaction studies and have shown the advantages of using the model for detecting the true main effects and interactions, compared with the usual functional model. In this project, we propose a novel Bayesian statistical model that combines the Bayesian hierarchical mixture model with the NOIA statistical model and the usual functional model. The proposed Bayesian NOIA model demonstrates more power at detecting the non-null effects with higher marginal posterior probabilities. Also, we review two Bayesian statistical models (Bayesian empirical shrinkage-type estimator and Bayesian model averaging), which were developed for the gene-environment interaction studies. Inspired by these Bayesian models, we develop two novel statistical methods that are able to handle the related problems such as borrowing data from historical studies. The proposed methods are analogous to the methods for the gene-environment interactions on behalf of the success on balancing the statistical efficiency and bias in a unified model. By extensive simulation studies, we compare the operating characteristics of the proposed models with the existing models including the hierarchical meta-analysis model. The results show that the proposed approaches adaptively borrow the historical data in a data-driven way. These novel models may have a broad range of statistical applications in both of genetic/genomic and clinical studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Development of homology modeling methods will remain an area of active research. These methods aim to develop and model increasingly accurate three-dimensional structures of yet uncrystallized therapeutically relevant proteins e.g. Class A G-Protein Coupled Receptors. Incorporating protein flexibility is one way to achieve this goal. Here, I will discuss the enhancement and validation of the ligand-steered modeling, originally developed by Dr. Claudio Cavasotto, via cross modeling of the newly crystallized GPCR structures. This method uses known ligands and known experimental information to optimize relevant protein binding sites by incorporating protein flexibility. The ligand-steered models were able to model, reasonably reproduce binding sites and the co-crystallized native ligand poses of the β2 adrenergic and Adenosine 2A receptors using a single template structure. They also performed better than the choice of template, and crude models in a small scale high-throughput docking experiments and compound selectivity studies. Next, the application of this method to develop high-quality homology models of Cannabinoid Receptor 2, an emerging non-psychotic pain management target, is discussed. These models were validated by their ability to rationalize structure activity relationship data of two, inverse agonist and agonist, series of compounds. The method was also applied to improve the virtual screening performance of the β2 adrenergic crystal structure by optimizing the binding site using β2 specific compounds. These results show the feasibility of optimizing only the pharmacologically relevant protein binding sites and applicability to structure-based drug design projects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The multifunctional Ca$\sp{2+}$/calmodulin-dependent protein kinase II (CaM kinase) is a Ser/Thr directed protein kinase that participates in diverse Ca$\sp{2+}$ signaling pathways in neurons. The function of CaM kinase depends upon the ability of subunits to form oligomers and to interact with other proteins. Oligomerization is required for autophosphorylation which produces significant functional changes that include Ca$\sp{2+}$/calmodulin-independent activity and calmodulin trapping. Associations with other proteins localize CaM kinase to specific substrates and effectors which serves to optimize the efficiency and speed of signal transduction. In this thesis, we investigate the interactions that underlie the appropriate positioning of CaM kinase activity in cells. We demonstrate that the subcellular distribution of CaM kinase is dynamic in hippocampal slices exposed to anoxic/aglycemic insults and to high K$\sp{+}$-induced depolarization. We determine the localization of CaM kinase domains expressed in neurons and PC-12 cells and find that the C-terminal domain of the $\alpha$ subunit is necessary for localization to dendrites. Moreover, monomeric forms of the enzyme gain access to the nucleus. Attempts made to identify novel CaM kinase binding proteins using the yeast two-hybrid system resulted in the isolation of hundreds of positive clones. Those that have been sequenced are identical to CaM kinase isoforms. Finally, we report the discovery of specific regions within the C-terminal domain that are necessary and sufficient for subunit-subunit interactions. Differences between the $\alpha$ and $\beta$ isoforms were discovered that indicate unique structural requirements for oligomerization. A model for how CaM kinase subunits interact to form holoenzymes and how structural heterogeneity might influence CaM kinase function is presented. ^