36 resultados para GENE-ENCODING TANNASE
Resumo:
The spontaneously hypertensive rat (SHR) is a model of essential hypertension. During the early development of hypertension, the SHR demonstrates increased proximal tubule (PT) Na+ reabsorption. I hypothesized that the increased PT Na+ reabsorption exhibited by the young SHR was due to altered sub-cellular distribution of Na+, K +-ATPase compared to the normotensive Wistar Kyoto (WKY). The hypothesis is supported, herein, by observations of greater Na+, K +-ATPase α 1 abundance in PT plasma membrane and lower abundance in late endosomes of 4wk SHR despite no difference in total PT α 1 abundance. There is a greater amount of Ser-18 unphosphorylated α 1 in the 4wk SHR PT. Total PT Na+, K+-ATPase γ abundance is greater in SHR at 4wk and 16wk but γ abundance in plasma membrane is greater only at 4wk. The phosphatase, calcineurin, was chosen for study because it is involved in the stimulation of Na+, K +-ATPase. No difference in calcineurin coding sequence, expression, or activity was observed in SHR. Gene expression arrays were next used to find candidate genes involved in the regulation of Na+, K +-ATPase. The first candidate analyzed was soluble epoxide hydrolase (sEH). The gene encoding sEH (EPHX2) showed lower expression in SHR. There was also a reduction in sEH protein abundance but there was no correlation between protein abundance and blood pressure in F2 progeny. Two EPHX2 alleles were identified, an ancestral allele and a variant allele containing four polymorphisms. sEH activity was greater in animals carrying the variant allele but the inheritance of the variant allele did not correlate with blood pressure. Gene expression arrays also led to the examination of genes involved in redox balance/Na+, K+-ATPase regulation. A pattern of lower expression of genes involved in reactive radical detoxification in SHR was discerned. Six transcription factor binding sites were identified that occurred more often in these genes. Three transcription factors that bind to the HNF1 site were expressed at lower levels in SHR. This points to the HNF1 transcriptional complex as an important trans-acting regulator of a wide range of genes involved in altered redox balance in SHR. ^
Resumo:
Deficiency of the enzyme adenosine deaminase (ADA) results in severe lymphopenia in humans. Mice with an inactivating mutation in the ADA gene also exhibit profound lymphopenia, as well as pulmonary insufficiency and ribcage abnormalities. In fact, the mouse model has a phenotype that is remarkably similar to that of the human disease, making the mice valuable tools for unraveling the mechanism of lymphocyte destruction in absence of this housekeeping gene. T cell deficiency in ADA deficiency has been extensively studied by others, revealing a block in early thymocyte development. In contrast, our studies revealed that early B cell development in the bone marrow is normal. ADA-deficient mice, however, exhibit profound defects in germinal center formation, preventing antigen-dependent B cell maturation in the spleen. ADA-deficient spleen B cells display significant defects in proliferation and activation signaling, and produce more IgM than their normal counterparts, suggesting that extrafollicular plasmablasts are overrepresented. B cells from ADA-deficient mouse spleens undergo apoptosis more readily than those from normal mouse spleens. Levels of ADA's substrates, adenosine and 2′-deoxyadenosine, are elevated in both bone marrow and spleen in ADA-deficient mice. S ′-adenosyihomoeysteine hydrolase (SAH hydrolase) activity is significantly inhibited in both locales, as well. dATP levels, though, are only elevated in spleen, where B cell development is impaired, and not in bone marrow, where B cell ontogeny is normal. This finding points to dATP as the causative agent of lymphocyte death in ADA deficiency. ADA deficiency results in inhibition of the enzyme ribonucleotide reductase, thereby depleting nucleoside pools needed for DNA repair. Another mouse model that lacks a functional gene encoding a protein involved in DNA repair and/or cell cycle checkpoint regulation, p53-binding protein 1, exhibits blocks in T and B cell development that are similar to those seen in ADA-deficient mice. Unraveling the mechanisms of lymphocyte destruction in ADA deficiency may further understanding of lymphocyte biology, facilitate better chemotherapeutic treatment for lymphoproliferative diseases, and improve gene and enzyme therapy regimens attempted for ADA deficiency. ^
Resumo:
Oligodendrogliomas are primary neoplasms of the central nervous system (CNS). One of the most common and characteristic chromosomal abnormalities observed in oligodendroglioma is allelic loss of 1p (Reifenberger et al., 1994; Bello et al., 1995). Since 1p loss has been reported for both well-differentiated and anaplastic oligodendroglioma, it is believed to occur early in tumor development (Bello et al., 1995). This allelic loss also has clinical significance, for oligodendroglioma patients with 1p loss generally respond significantly better to combination chemotherapy and have longer average survival than do oligodendroglioma patients without 1p loss (Cairncross et al., 1998). To date, no genes on 1p have been implicated as essential to the development or treatment response of oligodendroglioma. In order to localize and/or identify a gene involved in oligodendroglioma development, I tested 170 oligodendrogliomas for deletions of 1p and tested 26 tumors for differential expression of genes in the region of 1p36. Evidence obtained from these methods implicated two genes, SHREW1 and the gene encoding DNA fragmentation factor beta (DFFB). The function for the SHREW1 locus is currently not well known, but preliminary data suggests that it a novel member of adherens junctions. The DFFB gene is an enhancer for apoptosis. Thus, both SHREW1 and DFFB may be candidates for an oligodendroglioma tumor suppressor. Mutational analysis of both genes did not uncover any mutations. Future studies will evaluate other mechanisms that may be responsible for inactivation of these genes in oligodendrogliomas. ^
Resumo:
Classical ablation studies have shown that neural crest cells (NCC) are critical for thymus organogenesis, though their role in this process has never been determined. We have used a mouse model deficient in NCC near the thymus rudiment to investigate the role of NCC in thymus organogenesis. Splotch mice exhibit a lack of NCC migration due to mutation in the gene encoding the transcription factor Pax 3. Homozygous mutants, designated Pax3Sp/Sp, display a range of phenotypes including spina bifida, cardiac outflow tract deformities, and craniofacial deformities. Pax3Sp/Sp, mice have also been reported to have hypoplastic and abnormal thymi, which is consistent with the expected result based on the classical ablation studies. However, in contrast to the dogma, we find that the thymus lobes in Pax3Sp/Sp, mice are even larger in size than those of littermate controls, although they fail to migrate and are therefore ectopic. Differentiation of the thymic epithelial compartments occurs normally, including the ability to import hematopoietic precursors, until the embryos die at embryonic day E13.0. We also investigated the patterning of the third pharyngeal pouch which gives rise to both the thymus and the parathyroid. Using RNA probes to detect expression of transcription factors exclusively expressed in the ventral, thymus- or dorsal, parathyroidfated domains of the E11.5 third pouch, we show that the parathyroid domain is restricted and the thymus-fated domain is expanded in Pax3Sp/Sp, embryos. Furthermore, mixing of the boundary between these domains occurs at E12.0. These results necessitate reconsideration of the previously accepted role for NCC in thymus organogenesis. NCC are not required for outgrowth of the thymus up to E13.0, and most strikingly, we have discovered a novel role for NCC in establishing parathyroid versus thymus fate boundaries in the third pharyngeal pouch. ^
Resumo:
Inactivation by allelic exchange in clinical isolates of the emerging nosocomial pathogen Enterococcus faecium has been hindered by lack of efficient tools, and, in this study, transformation of clinical isolates was found to be particularly problematic. For this reason, a vector for allelic replacement (pTEX5500ts) was constructed that includes (i) the pWV01-based gram-positive repAts replication region, which is known to confer a high degree of temperature intolerance, (ii) Escherichia coli oriR from pUC18, (iii) two extended multiple-cloning sites located upstream and downstream of one of the marker genes for efficient cloning of flanking regions for double-crossover mutagenesis, (iv) transcriptional terminator sites to terminate undesired readthrough, and (v) a synthetic extended promoter region containing the cat gene for allelic exchange and a high-level gentamicin resistance gene, aph(2'')-Id, to distinguish double-crossover recombination, both of which are functional in gram-positive and gram-negative backgrounds. To demonstrate the functionality of this vector, the vector was used to construct an acm (encoding an adhesin to collagen from E. faecium) deletion mutant of a poorly transformable multidrug-resistant E. faecium endocarditis isolate, TX0082. The acm-deleted strain, TX6051 (TX0082Deltaacm), was shown to lack Acm on its surface, which resulted in the abolishment of the collagen adherence phenotype observed in TX0082. A mobilizable derivative (pTEX5501ts) that contains oriT of Tn916 to facilitate conjugative transfer from the transformable E. faecalis strain JH2Sm::Tn916 to E. faecium was also constructed. Using this vector, the acm gene of a nonelectroporable E. faecium wound isolate was successfully interrupted. Thus, pTEX5500ts and its mobilizable derivative demonstrated their roles as important tools by helping to create the first reported allelic replacement in E. faecium; the constructed this acm deletion mutant will be useful for assessing the role of acm in E. faecium pathogenesis using animal models.
Resumo:
Genomic libraries of two Enterococcus faecalis strains, OG1RF and TX52 (an isolate from an endocarditis patient), were constructed in Escherichia coli and were screened with serum from a rabbit immunized with surface proteins of an E. faecalis endocarditis isolate and sera from four patients with enterococcal endocarditis. Thirty-eight immunopositive cosmid clones reacted with at least two of the patient sera and contained distinct inserts based on their DNA restriction patterns. These were chosen for further subcloning in a pBluescript SK ($-$) vector. Each sublibrary was screened with one of the five sera. Analysis of sequences from the immunopositive subclones revealed similarities to a range of proteins, including bacterial virulence factors, transporters, two-component regulators, metabolic enzymes, and membrane or cell surface proteins. Fourteen subclones did not show significant similarity to any sequence in the databases and may contain novel genes. Thirteen of the immunopositive cosmid clones did not yield immunopositive subclones and one such cosmid clone, TX5159, produced an antigenic polysaccharide in Escherichia coli. The insert of TX5159 was found to contain a multicistronic gene cluster containing genes similar to those involved in the biosynthesis and export of polysaccharides from both Gram-positive and Gram-negative organisms. Insertions in several genes within the cluster abolished the immunoreactivity of TX5159. RT-PCR of genes within the cluster with total RNA from OG1RF showed that these genes are transcribed. The polysaccharide was detected in two recently reported E. faecalis mucoid strains using specific antibody, but not in the other strains tested. This is the first report on a gene cluster of E. faecalis involved in the biosynthesis of an antigenic polysaccharide. ^
Resumo:
Addback of donor T cells following T cell-depleted stem cell transplantation (SCT) can accelerate immune reconstitution and be effective against relapsed malignancy. After haploidentical SCT, a high risk of graft-versus-host disease (GVHD) essentially precludes this option, unless the T cells are first depleted of alloreactive precursor cells. Even then, the risks of severe GVHD remain significant. To increase the safety of the approach and thereby permit administration of larger T cell doses, we used a suicide gene, inducible caspase 9 (iCasp9), to transduce allodepleted T cells, permitting their destruction should administration have adverse effects. We made a retroviral vector encoding iCasp9 and a selectable marker (truncated CD19). Even after allodepletion (using anti-CD25 immunotoxin), donor T cells could be efficiently transduced, expanded, and subsequently enriched by CD19 immunomagnetic selection to >90% purity. These engineered cells retained antiviral specificity and functionality, and contained a subset with regulatory phenotype and function. Activating iCasp9 with a small-molecule dimerizer rapidly produced >90% apoptosis. Although transgene expression was downregulated in quiescent T cells, iCasp9 remained an efficient suicide gene, as expression was rapidly upregulated in activated (alloreactive) T cells. We have demonstrated the clinical feasibility of this approach after haploidentical transplantation by scaling up production using clinical grade materials.
Resumo:
We recently identified 15 genes encoding putative surface proteins with features of MSCRAMMs and/or pili in the Enterococcus faecium TX0016 (DO) genome, including four predicted pilus-encoding gene clusters; we also demonstrated that one of these, ebpABC(fm), is transcribed as an operon, that its putative major pilus subunit, EbpC(fm) (also called pilB), is polymerized into high molecular weight complexes, and that it is enriched among clinical E. faecium isolates. Here, we created a deletion of the ebpABC(fm) operon in an endocarditis-derived E. faecium strain (TX82) and showed, by a combination of whole-cell ELISA, flow cytometry, immunoblot and immunogold electron microscopy, that this deletion abolished EbpC(fm) expression and eliminated EbpC(fm)-containing pili from the cell surface. However, transcription of the downstream sortase, bps(fm), was not affected. Importantly, the ebpABC(fm) deletion resulted in significantly reduced biofilm formation (p < 0.0001) and initial adherence (p < 0.0001) versus the wild-type; both were restored by complementing ebpABC(fm) in trans, which also restored cell surface expression of EbpC(fm) and pilus production. Furthermore, the deletion mutant was significantly attenuated in two independent mixed infection mouse urinary tract experiments, i.e., outnumbered by the wild-type in kidneys (p = 0.0003 and < 0.0001, respectively) and urinary bladders (p = 0.0003 and = 0.002). In conclusion, we have shown that the ebpABC(fm) locus encodes pili on the E. faecium TX82 cell surface and provide the first evidence that pili of this emerging pathogen are important for its ability to form biofilm and to cause infection in an ascending UTI model.
Resumo:
Deletion mutants of the two sortase genes of Enterococcus faecalis OG1RF were constructed. srtC (renamed here bps for biofilm and pilus-associated sortase) was previously shown to be necessary for the production of Ebp pili and important for biofilm formation and endocarditis. Here, we report that a srtA deletion mutant showed a small (5%) yet significant (P = 0.037) reduction in biofilm relative to OG1RF, while a DeltasrtA Deltabps double mutant showed a much greater reduction (74% versus OG1RF and 44% versus the Deltabps mutant). In a murine urinary tract infection (UTI), the 50% infective doses of both the DeltasrtA Deltabps and Deltabps mutants were approximately 2 log10 greater than that of OG1RF or the DeltasrtA mutant. Similarly, approximately 2 log10 fewer bacteria were recovered from the kidneys after infection with the Deltabps mutant (P = 0.017) and the DeltasrtA Deltabps double mutant (P = 0.022) compared to wild-type strain OG1RF. In a competition UTI, the Deltabps mutant was slightly, but not significantly, less attenuated than the DeltasrtA Deltabps double mutant. Fluorescence-activated cell sorter analysis with Ebp-specific antibodies confirmed that a minority of OG1RF cells express Ebp pili on their surface in vitro and that Bps has a major role in Ebp pilus biogenesis but also indicated a function for SrtA in surface localization of the pilus subunit protein EbpA. In conclusion, deletion of bps had a major effect on virulence in murine UTIs, as well as biofilm; deletion of srtA from OG1RF had little effect on these phenotypes, but its deletion from a bps mutant had a pronounced effect on biofilm, suggesting that Bps and/or the proteins it anchors may compensate for the loss of some SrtA function(s).
Resumo:
Deletion mutants of the two sortase genes of Enterococcus faecalis OG1RF were constructed. srtC (renamed here bps for biofilm and pilus-associated sortase) was previously shown to be necessary for the production of Ebp pili and important for biofilm formation and endocarditis. Here, we report that a srtA deletion mutant showed a small (5%) yet significant (P = 0.037) reduction in biofilm relative to OG1RF, while a DeltasrtA Deltabps double mutant showed a much greater reduction (74% versus OG1RF and 44% versus the Deltabps mutant). In a murine urinary tract infection (UTI), the 50% infective doses of both the DeltasrtA Deltabps and Deltabps mutants were approximately 2 log10 greater than that of OG1RF or the DeltasrtA mutant. Similarly, approximately 2 log10 fewer bacteria were recovered from the kidneys after infection with the Deltabps mutant (P = 0.017) and the DeltasrtA Deltabps double mutant (P = 0.022) compared to wild-type strain OG1RF. In a competition UTI, the Deltabps mutant was slightly, but not significantly, less attenuated than the DeltasrtA Deltabps double mutant. Fluorescence-activated cell sorter analysis with Ebp-specific antibodies confirmed that a minority of OG1RF cells express Ebp pili on their surface in vitro and that Bps has a major role in Ebp pilus biogenesis but also indicated a function for SrtA in surface localization of the pilus subunit protein EbpA. In conclusion, deletion of bps had a major effect on virulence in murine UTIs, as well as biofilm; deletion of srtA from OG1RF had little effect on these phenotypes, but its deletion from a bps mutant had a pronounced effect on biofilm, suggesting that Bps and/or the proteins it anchors may compensate for the loss of some SrtA function(s).
Resumo:
The plasmid-encoded, constitutively produced $\beta$-lactamase gene from Enterococcus faecalis strain HH22 was genetically characterized. A restriction endonuclease map of the 5.1 kb EcoRI fragment encoding the enterococcal $\beta$-lactamase was prepared and compared with the restriction map of a cloned staphylococcal $\beta$-lactamase gene (from the naturally-occurring staphylococcal $\beta$-lactamase plasmid pI258). Comparison and hybridization studies showed that there were identical restriction sites in the region of the $\beta$-lactamase structural gene but not in the region surrounding this gene. Also the enterococcal $\beta$-lactamase plasmid did not encode resistance to mercury or cadmium which is encoded by the small, transducible staphylococcal $\beta$-lactamase plasmids. The nucleotide sequence of the enterococcal gene was shown to be identical to the published sequences of three of four staphylococcal type A $\beta$-lactamase genes; more differences were seen with the genes for staphylococcal type C and D enzymes. One hundred-forty nucleotides upstream of the $\beta$-lactamase start codon were also determined for the inducible staphylococcal $\beta$-lactamase gene on pI258; this sequence was identical to that of the constitutively expressed enterococcal gene indicating that the changes resulting in constitutive expression are not due to changes in the promoter or operator region. Moreover, complementation studies indicated that production of the enterococcal enzyme could be repressed. The gene for the enterococcal $\beta$-lactamase and an inducible staphylococcal $\beta$-lactamase were each cloned into a shuttle vector and then transformed into enterococcal and staphylococcal recipients. The major difference between the two host backgrounds was that more enzyme was produced by the staphylococcal host, regardless of the source of the gene but no qualitative difference was seen between the two genera. Also a difference in the level of resistance to ampicillin was seen between the two backgrounds with the cloned enzymes by MIC and time-kill studies. The location of the enzyme was found to be host dependent since each cloned gene generated extracellular (free) enzyme in the staphylococcus and cell bound enzyme in the enterococcus. Based on the identity of the enterococcal $\beta$-lactamase and several staphylococcal $\beta$-lactamases, these data suggest recent spread of $\beta$-lactamase to enterococci and also suggest loss of a functional repressor. ^
Resumo:
Histone gene expression is replication-independent during oogenesis and early embryogenesis in amphibians; however, it becomes replication-dependent during later embryogenesis and remains replication-dependent through adulthood. In order to understand the mechanism for this switch in transcriptional regulation of histone gene expression during amphibian development, linker-scanning mutations were made in a Xenopus laevis H2B histone gene promoter by oligonucleotide site-directed mutagenesis and assayed by microinjection into oocytes and embryos. The Xenopus H2B gene has a relatively simple promoter containing several transcriptional regulatory elements, including TFIID, CCAAT, and ATF motifs, required for maximal transcription in both oocytes and embryos. Factors binding to the CCAAT and ATF motifs are present in oocytes and embryos and increase slightly in abundance during early development. A sequence (CTTTACAT) in the frog H2B promoter resembling the conserved octamer motif (ATTTGCAT), the target for cell-cycle regulation of a human H2B gene, is additionally required for maximal H2B transcription in frog embryos. Oocytes and embryos contain multiple octamer-binding proteins that are expressed in a sequential manner during early development. Sequences encoding three novel octamer-binding proteins were isolated from Xenopus cDNA libraries by virtue of their similarity with the DNA binding (POU) domain of the ubiquitously expressed transcription factor Oct-1. The protein encoded by one of these genes, termed Oct-60, was localized mainly in the cytoplasm of oocytes and was also present in early embryos until the gastrula stage of development. Proteins encoded by the other two genes, Oct-25 and Oct-91, were present in embryos after the mid-blastula stage of development and decreased by early neurula stage. The activity of the Xenopus H2B octamer motif in embryos is not specifically associated with increased binding by Oct-1 or the appearance of novel octamer-binding proteins but requires the presence of an intact CCAAT motif. We found that synergistic interactions among promoter elements are important for full H2B promoter activity. The results suggest that transcription of the Xenopus H2B gene is replication-dependent when it is activated at the mid-blastula stage of development and that replication-dependent H2B transcription is mediated by Oct-1. ^
Resumo:
Cell differentiation are associated with activation of cell lineage-specific genes. The $LpS{\it 1}\beta$ gene of Lytechinus pictus is activated at the late cleavage stage. $LpS{\it 1}\beta$ transcripts accumulate exclusively in aboral ectoderm lineages. Previous studies demonstrated two G-string DNA-elements, proximal and distal G-strings, which bind to an ectoderm-enriched nuclear factor. In order to define the cis-elements which control positive expression of the $LpS{\it 1}\beta$ gene, the regulatory region from $-$108 to +17 bp of the $LpS{\it 1}\beta$ gene promoter was characterized. The ectoderm G-string factor binds to a G/C-rich region larger than the G-string itself and the binding of the G-string factor requires sequences immediately downstream from the G-string. These downstream sequences are essential for full promoter activity. In addition, only 108 bp of $LpS{\it 1}\beta\ 5\sp\prime$ flanking DNA drives $LpS{\it 1}\beta$ gene expression in aboral ectoderm/mesenchyme cells. Therefore, for positive control of $LpS{\it 1}\beta$ gene expression, two regions of 5$\sp\prime$ flanking DNA are required: region I from base pairs $-$762 to $-$511, and region II, which includes the G/C-rich element, from base pairs $-$108 to $-$61. A mesenchyme cell repressor element is located within region I.^ DNA-binding proteins play key roles in determination of cell differentiation. The zinc finger domain is a DNA-binding domain present in many transcription factors. Based on homologies in zinc fingers, a zinc finger-encoding gene, SpKrox-1, was cloned from S. purpuratus. The putative SpKrox-1 protein has all structural characteristics of a transcription factor: four zinc fingers for DNA binding; acidic domain for transactivation; basic domain for nuclear targeting; and leucine zipper for dimerization. SpKrox-1 RNA transcripts showed a transient expression pattern which correlates largely with early embryonic development. The spatial expression of SpKrox-1 mRNA was distributed throughout the gastrula and larva ectodermal wall. However, SpKrox-1 was not expressed in pigment cells. The SpKrox-1 gene is thus a marker of a subset of SMCs or ectoderm cells. The structural features, and the transient temporal and restricted spatial expression patterns suggest that SpKrox-1 plays a role in a specific developmental event. ^
Resumo:
The Wilms' tumor gene, WT1, encodes a zinc finger transcription factor which functions as a tumor suppressor. Defects in the WT1 gene can result in the development of nephroblastoma. WT1 is expressed during development, primarily in the metanephric kidney, the mesothelial lining of the abdomen and thorax, and the developing gonads. WT1 expression is tightly regulated and is essential for renal development. The WT1 gene encodes a protein with a proline-rich N-terminus which functions as a transcriptional repressor and C-terminus contains 4 zinc fingers that mediate DNA binding. WT1 represses transcription from a number of growth factors and growth factor receptors. WT1 mRNA undergoes alternative splicing at two sites, resulting in 4 mRNA species and polypeptide products. Exon 5, encoding 17 amino acids is alternatively spliced, and is located between the transcriptional repression domain and the DNA binding domain. The second alternative splice is the terminal 9 nucleotides of zinc finger 3, encoding the tripeptide Lys-Thr-Ser (KTS). The presence or absence of KTS within the zinc fingers of WT1 alters DNA binding.^ I have investigated transcriptional regulation of WT1, characterizing two means of repressing WT1 transcription. I have cloned a transcriptional silencer of the WT1 promoter which is located in the third intron of the WT1 gene. The silencer is 460 bp in length and contains an Alu repeat. The silencer functions in cells of non-renal origin.^ I have found that WT1 protein can autoregulate the WT1 promoter. Using the autoregulation of the WT1 promoter as a functional assay, I have defined differential consensus DNA binding motifs of WT1 isoforms lacking and containing the KTS tripeptide insertion. With these refined consensus DNA binding motifs, I have identified two additional targets of WT1 transcriptional repression, the proto-oncogenes bcl-2 and c-myc.^ I have investigated the ability of the alternatively spliced exon 5 to influence cell growth. In cell proliferation assays, isoforms of WT1 lacking exon 5 repress cell growth. WT1 isoforms containing exon 5 fail to repress cell growth to the same extent, but alter the morphology of the cells. These experiments demonstrate that the alternative splice isoforms of WT1 have differential effects on the function of WT1. These findings suggest a role for the alternative splicing of WT1 in metanephric development. ^
Resumo:
The nar operon, which encodes the nitrate reductase in Escherichia coli, can be induced under anaerobic conditions without nitrate to a low level and with nitrate to a maximum level. The anaerobic formation of nitrate reductase is dependent upon the fnr gene product while the narL gene product is required for further induction by nitrate. The sequence was determined across the entire promoter and regulatory region of the nar operon. The translational start site of the first structural gene of the nar operon, narG gene, was established by identifying the nucleotide sequence for the first 20 N-terminal amino acid residues of the alpha subunit of nitrate reductase. The transcriptional start site and the level of the transcript was determined by S1 mapping procedure. One major transcript was identified which was initiated 50 base pair (bp) upstream from the translational start site of the first structural gene. The synthesis of the transcript was repressed aerobically, fully induced by nitrate anaerobically, and greatly reduced in a ${\rm Fnr\sp-}$ mutant. Deletions were created in the 5$\sp\prime$ nar regulatory sequence with either an intact nar operon or a nar::lacZ fusion. The expression of the plasmids with deletions were determined in a strain with wild type fnr and narL loci, a Fnr- mutant strain and a NarL- mutant strain. These experiments demonstrated that the $5\sp\prime$ limit of the nar operon lies at about $-210$ bp from the transcription start site. The region required for anaerobic induction by the fnr gene product is located around $-60$ bp. Two putative narL recognition sites were identified, one of which is around $-200$ and another immediately adjacent to the fnr recognition region. The deletion of the sequences around $-200$ rendered the remaining narL complex repressive and thus decreased the expression of nar operon, suggesting that the two potential narL sites interact with each other over a significant length of DNA. ^