19 resultados para Fashion clothing involvement
Involvement of HMGB1 in the repair of DNA adducts and the responses to DNA damage in mammalian cells
Resumo:
High mobility group protein B1 (HMGB1) is a multifunctional protein with roles in chromatin structure, transcription, V(D)J recombination, and inflammation. HMGB1 also binds to and bends damaged DNA, but the biological consequence of this interaction is not clearly understood. We have shown previously that HMGB1 binds cooperatively with nucleotide excision repair (NER) damage recognition proteins XPA and RPA to triplex-directed psoralen DNA interstrand crosslinks (ICLs). Based on this we hypothesized that HMGB1 is enhancing the repair of DNA lesions, and through this role, is affecting DNA damage-induced mutagenesis and cell survival. Because HMGB1 is also a chromatin protein, we further hypothesized that it is acting to facilitate chromatin remodeling at the site of the DNA damage, to allow access of the repair machinery to the DNA lesion. We demonstrated here that HMGB1 could bind to triplex-directed psoralen ICLs in a complex with NER proteins XPC-RAD23B, XPA and RPA, which occurred in the presence or absence of DNA. Supporting these findings, we demonstrated that HMGB1 enhanced repair of triplex-directed psoralen ICLs (by nucleotide incorporation), as well as removal of UVC irradiation-induced DNA lesions from the genome (by radioimmunoassay). We also explored HMGB1's role in chromatin remodeling upon DNA damage. Immunoblotting demonstrated that, in contrast to HMGB1 proficient cells, cells lacking HMGB1 showed no increase in histone acetylation after UVC irradiation. Additionally, purified HMGB1 protein enhanced chromatin formation in an in vitro chromatin assembly system. However, HMGB1 also has a role in DNA repair in the absence of chromatin, as shown by measuring UVC-induced nucleotide incorporation on a naked substrate. Upon exploration of HMGB1's effect on several cellular outcomes of DNA damage, we found that mammalian cells lacking HMGB1 were hypersensitive to DNA damage induced by psoralen plus UVA irradiation or UVC radiation, showing less survival and increased mutagenesis. These results reveal a new role for HMGB1 in the error-free repair of DNA lesions in a chromosomal context. As strategies targeting HMGB1 are currently in development for treatment of sepsis and rheumatoid arthritis, our findings draw attention to potential adverse side effects of anti-HMGB1 therapy in patients with inflammatory diseases. ^
Resumo:
This study addresses the responses to a postcard campaign with health messages targeting the parents of children in a sample of low-income elementary schools and assesses the feasibility and areas of possible improvements in such a project. The campaign was implemented in Spring 2009 with 4 th grade students (n=1070) in fifteen economically disadvantaged elementary schools in Travis County, Texas. Postcards were sent home with children, and parents filled out a feedback card that the children returned to school. Response data, in the form of self-administered feedback cards (n=2665) and one-on-one teacher interviews (n=8), were qualitatively analyzed using NVivo 8 software. Postcard reception and points of improvement were then identified from the significant themes that emerged including health, cessation or reduction of unhealthy behaviors, motivation, family, and the comprehension of abstract health concepts. ^ Responses to the postcard campaign were almost completely positive, with less than 1% of responses reporting some sort of dislike, and many parents reported a modification of their behavior. However, possible improvements that could be made to the campaign are: increased focus of the postcards on the parents as the target population, increased information about serving size, greater emphasis on the link between obesity and health, alteration of certain skin tones used in the graphical depiction of people on the cards, and smaller but more frequent incentives to return the feedback cards for the students. The program appears to be an effective method of communicating health messages to the parents of 4th grade children.^
Resumo:
Many lines of clinical and experimental evidence indicate a viral role in carcinogenesis (1-6). Our access to patient plasma, serum, and tissue samples from invasive breast cancer (N=19), ductal carcinoma in situ (N=13), malignant ovarian cancer (N=12), and benign ovarian tumors (N=9), via IRB-approved and informed consent protocols through M.D. Anderson Cancer Center, as well as normal donor plasmas purchased from Gulf Coast Regional Blood Center (N=6), has allowed us to survey primary patient blood and tissue samples, healthy donor blood from the general population, as well as commercially available human cell lines for the presence of human endogenous retrovirus K (HERV-K) Env viral RNA (vRNA), protein, and viral particles. We hypothesize that HERV-K proteins are tumor-associated antigens and as such can be profiled and targeted in patients for diagnostic and therapeutic purposes. To test this hypothesis, we employed isopycnic ultracentrifugation, a microplate-based reverse transcriptase enzyme activity assay, reverse transcription – polymerase chain reaction (RT-PCR), cDNA sequencing, SDS-PAGE and western blotting, immunofluorescent staining, confocal microscopy, and transmission electron microscopy to evaluate v HERV-K activation in cancer. Data from large numbers of patients tested by reverse transcriptase activity assay were analyzed statistically by t-test to determine the potential use of this assay as a diagnostic tool for cancer. Significant reverse transcriptase enzyme activity was detected in 75% of ovarian cancer patients, 53.8% of ductal carcinoma in situ patient, and 42.1% of invasive breast cancer patient samples. Only 11.1% of benign ovarian patient and 16.7% of normal donor samples tested positive. HERV-K Env vRNA, or Env SU were detected in the majority of cancer types screened, as demonstrated by the results shown herein, and were largely absent in normal controls. These findings support our hypothesis that the presence of HERV-K in patient blood circulation is an indicator of cancer or pre-malignancy in vivo, that the presence of HERV-K Env on tumor cell surfaces is indicative of malignant phenotype, and that HERV-K Env is a tumor-associated antigen useful not only as a diagnostic screening tool to predict patient disease status, but also as an exploitable therapeutic target for various novel antibody-based immunotherapies.
Resumo:
A combination of psoralen and ultraviolet-A radiation, commonly referred to as "PUVA," is widely used in the treatment of psoriasis. However, PUVA treatment increases the risk of developing skin cancer in psoriasis patients and induces skin cancer in mice. It is, however unknown whether the increased incidence of skin cancer in PUVA treated psoriasis patients is due to the carcinogenic effects of PUVA therapy or due to an indirect effect such as immunosuppression, which can permit the growth of tumors induced by UVB radiation. In this study, we used the p53 tumor suppressor gene as a molecular marker to determine whether PUVA-induced mouse skin cancers contain unique mutations in p53 that are different from UV-induced mutations, and if so, determine whether skin cancers from PUVA treated patients have PUVA-type or UV-type p53 mutations. Since the DNA lesions induced by PUVA are quite different from those induced by UV, we hypothesize that p53 mutations induced by PUVA may also be different from those induced by UV.^ Analysis of PUVA-induced murine skin cancers for p53 mutations revealed that 14 of 15 (93%) missense mutations detected in these cancers were localized at 5$\sp\prime$-TA/5$\sp\prime$-TAT sites, potential sites of psoralen photoadditions. Mutations at these sequences are exceedingly rare in UV-induced murine skin cancers. In addition, PUVA-induced murine skin cancers did not contain UV signature (C $\to$ T or CC $\to$ TT transitions) mutations in p53. These results suggest that PUVA induces unique mutations in p53 that can be distinguished from those induced by UV.^ Next we determined whether SCCs arising in PUVA treated psoriasis patients have PUVA-type or UV-type p53 mutations. The results indicated that 16 of 25 (64%) missense p53 mutations detected in SCCs from PUVA treated patients were located at 5$\sp\prime$-TG, 5$\sp\prime$-TA and 5$\sp\prime$-TT sites, putative sites of psoralen photobinding. Interestingly, about 32% of p53 mutations detected in SCCs from PUVA treated patients had the UV signature. Taken together these results suggest that both PUVA and UVB play a role in the development of SCCs in psoriasis patients undergoing PUVA therapy. ^