311 resultados para Existing medical school


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Statement of Problem: The second background paper for the Medical School Objective Project (MSOP), defined Educational Technology (ET) as the use of information technology to facilitate student’s learning.1 Medical schools as a group have made limited progress in accomplishing the recommended educational technology goals and there had been much greater use of such technology in basic sciences courses than in clinical clerkships. We will explore the positive and negative implications of incorporating ET into the educational experience of TMC schools. [See PDF for complete abstract]

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Expert Panel: Documenting Teaching Scholarship for Promotion and Tenure Lemuel Moye, School of Public Health Miguel daCunha, School of Nursing William Tate, Dental School Katherine Loveland, Medical School

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Regulation of glutamate transporters accompanies plasticity of some glutamatergic synapses. The regulation of glutamate uptake at the Aplysia sensorimotor synapse during long-term facilitation (LTF) was investigated. Previously, increases in levels of ApGT1 (Aplysia glutamate transporter 1) in synaptic membranes were found to be related to long-term increases in glutamate uptake. In this study, we found that regulation of ApGT1 during LTF appears to occur post-translationally. Serotonin (5-HT) a transmitter that induces LTF did not increase synthesis of ApGT1. A pool of ApGT1 appears to exist in sensory neuron somata, which is transported to the terminals by axonal transport. Blocking the rough endoplasmic reticulum-Golgi-trans-Golgi network (TGN) pathway with Brefeldin A prevented the 5-HT-induced increase of ApGT1 in terminals. Also, 5-HT produced changes in post-translational modifications of ApGT1 as well as changes in the levels of an ApGT1-co-precipitating protein. These results suggest that regulation of trafficking of ApGT1 from the vesicular trafficking system (rough endoplasmic reticulum-Golgi-TGN) in the sensory neuron somata to the terminals by post-translational modifications and protein interactions appears to be the mechanism underlying the increase in ApGT1, and thus, glutamate uptake during memory formation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introduction: Concerns about the quality of physician education have changed current medical education practices. Learners must demonstrate competency in core areas, rather than solely participating in educational activities. Academic medical institutions are challenged with identifying leaders to direct curricular and evaluation reforms. An innovative partnership between the University of Houston College of Education and Baylor College of Medicine, the University of Texas Medical School at Houston, and the University of Texas Dental Branch at Houston offers a Masters of Education in Teaching degree with an emphasis in Health Sciences. Courses encompass fundamental areas including curriculum, instruction, technology, measurement, research design and statistics. [See PDF for complete abstract]

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Sleep disorders are an important cause of morbidity among our population with billions of dollars spent on direct and indirect costs attributed to sleep disorders. In spite of raising prevalence and morbidity, surveys have shown inadequate education in sleep medicine at all levels at medical school. According to national sleep disorders research plan data, in 1990 about 37 % of medical schools did not offer any sleep education and of the schools which offered it, the average time devoted to sleep medicine was about 2 hours. Sleep disorders have found to be uniformly under diagnosed in primary care settings. [See PDF for complete abstract]

Relevância:

80.00% 80.00%

Publicador:

Resumo:

All U.S. medical schools require some medical ethics education and must now ensure that their graduates, residents, and faculty exhibit competence in the area of professionalism and professional medical ethics. However, there remain many challenges to implementing formal ethics and professionalism education into medical school curricula. [See PDF for complete abstract]

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: A key aspect of representations for object recognition and scene analysis in the ventral visual stream is the spatial frame of reference, be it a viewer-centered, object-centered, or scene-based coordinate system. Coordinate transforms from retinocentric space to other reference frames involve combining neural visual responses with extraretinal postural information. METHODOLOGY/PRINCIPAL FINDINGS: We examined whether such spatial information is available to anterior inferotemporal (AIT) neurons in the macaque monkey by measuring the effect of eye position on responses to a set of simple 2D shapes. We report, for the first time, a significant eye position effect in over 40% of recorded neurons with small gaze angle shifts from central fixation. Although eye position modulates responses, it does not change shape selectivity. CONCLUSIONS/SIGNIFICANCE: These data demonstrate that spatial information is available in AIT for the representation of objects and scenes within a non-retinocentric frame of reference. More generally, the availability of spatial information in AIT calls into questions the classic dichotomy in visual processing that associates object shape processing with ventral structures such as AIT but places spatial processing in a separate anatomical stream projecting to dorsal structures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The neuropeptide Phe-Met-Arg-Phe-NH(2) (FMRFa) can induce transcription-dependent long-term synaptic depression (LTD) in Aplysia sensorimotor synapses. We investigated the role of the ubiquitin-proteasome system and the regulation of one of its components, ubiquitin C-terminal hydrolase (ap-uch), in LTD. LTD was sensitive to presynaptic inhibition of the proteasome and was associated with upregulation of ap-uch mRNA and protein. This upregulation appeared to be mediated by CREB2, which is generally regarded as a transcription repressor. Binding of CREB2 to the promoter region of ap-uch was accompanied by histone hyperacetylation, suggesting that CREB2 cannot only inhibit but also promote gene expression. CREB2 was phosphorylated after FMRFa, and blocking phospho-CREB2 blocked LTD. In addition to changes in the expression of ap-uch, the synaptic vesicle-associated protein synapsin was downregulated in LTD in a proteasome-dependent manner. These results suggest that proteasome-mediated protein degradation is engaged in LTD and that CREB2 may act as a transcription activator under certain conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Exogenous recombinant human transforming growth factor beta-1 (TGF-beta1) induced long-term facilitation of Aplysia sensory-motor synapses. In addition, 5-HT-induced facilitation was blocked by application of a soluble fragment of the extracellular portion of the TGF-beta1 type II receptor (TbetaR-II), which presumably acted by scavenging an endogenous TGF-beta1-like molecule. Because TbetaR-II is essential for transmembrane signaling by TGF-beta, we sought to determine whether Aplysia tissues contained TbetaR-II and specifically, whether neurons expressed the receptor. Western blot analysis of Aplysia tissue extracts demonstrated the presence of a TbetaR-II-immunoreactive protein in several tissue types. The expression and distribution of TbetaR-II-immunoreactive proteins in the central nervous system was examined by immunohistochemistry to elucidate sites that may be responsive to TGF-beta1 and thus may play a role in synaptic plasticity. Sensory neurons in the ventral-caudal cluster of the pleural ganglion were immunoreactive for TbetaR-II, as well as many neurons in the pedal, abdominal, buccal, and cerebral ganglia. Sensory neurons cultured in isolation and cocultured sensory and motor neurons were also immunoreactive. TGF-beta1 affected the biophysical properties of cultured sensory neurons, inducing an increase of excitability that persisted for at least 48 hr. Furthermore, exposure to TGF-beta1 resulted in a reduction in the firing threshold of sensory neurons. These results provide further support for the hypothesis that TGF-beta1 plays a role in long-term synaptic plasticity in Aplysia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tuberculosis remains a major threat as drug resistance continues to increase. Pulmonary tuberculosis in adults is responsible for 80% of clinical cases and nearly 100% of transmission of infection. Unfortunately, since we have no animal models of adult type pulmonary tuberculosis, the most important type of disease remains largely out of reach of modern science and many fundamental questions remain unanswered. This paper reviews research dating back to the 1950's providing compelling evidence that cord factor (trehalose 6,6 dimycolate [TDM]) is essential for understanding tuberculosis. However, the original papers by Bloch and Noll were too far ahead of their time to have immediate impact. We can now recognize that the physical and biologic properties of cord factor are unprecedented in science, especially its ability to switch between two sets of biologic activities with changes in conformation. While TDM remains on organisms, it protects them from killing within macrophages, reduces antibiotic effectiveness and inhibits the stimulation of protective immune responses. If it comes off organisms and associates with lipid, TDM becomes a driver of tissue damage and necrosis. Studies emanating from cord factor research have produced (1) a rationale for improving vaccines, (2) an approach to new drugs that overcome natural resistance to antibiotics, (3) models of caseating granulomas that reproduce multiple manifestations of human tuberculosis. (4) evidence that TDM is a key T cell antigen in destructive lesions of tuberculosis, and (5) a new understanding of the pathology and pathogenesis of postprimary tuberculosis that can guide more informative studies of long standing mysteries of tuberculosis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Exposure of adherent cells to DNA damaging agents, such as the bacterial cytolethal distending toxin (CDT) or ionizing radiations (IR), activates the small GTPase RhoA, which promotes the formation of actin stress fibers and delays cell death. The signalling intermediates that regulate RhoA activation and promote cell survival are unknown. PRINCIPAL FINDINGS: We demonstrate that the nuclear RhoA-specific Guanine nucleotide Exchange Factor (GEF) Net1 becomes dephosphorylated at a critical inhibitory site in cells exposed to CDT or IR. Expression of a dominant negative Net1 or Net1 knock down by iRNA prevented RhoA activation, inhibited the formation of stress fibers, and enhanced cell death, indicating that Net1 activation is required for this RhoA-mediated responses to genotoxic stress. The Net1 and RhoA-dependent signals involved activation of the Mitogen-Activated Protein Kinase p38 and its downstream target MAPK-activated protein kinase 2. SIGNIFICANCE: Our data highlight the importance of Net1 in controlling RhoA and p38 MAPK mediated cell survival in cells exposed to DNA damaging agents and illustrate a molecular pathway whereby chronic exposure to a bacterial toxin may promote genomic instability.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cytochrome P450 (P450) is a super-family of drug metabolizing enzymes. P450 enzymes have dual function; they can metabolize drugs to pharmacologically inactive metabolites facilitating their excretion or biotransform them to pharmacologically active metabolites which may have longer half-life than the parent drug. The variable pharmacological response to psychoactive drugs typically seen in population groups is often not accountable by considering dissimilarities in hepatic metabolism. Metabolism in brain specific nuclei may play a role in pharmacological modulation of drugs acting on the CNS and help explain some of the diverse response to these drugs seen in patient population. P450 enzymes are also present in brain where drug metabolism can take place and modify therapeutic action of drugs at the site of action. We have earlier demonstrated an intrinsic difference in the biotransformation of alprazolam (ALP) in brain and liver, relatively more alpha-hydroxy alprazolam (alpha-OHALP) is formed in brain as compared to liver. In the present study we show that recombinant CYP3A43 metabolizes ALP to both alpha-OHALP and 4-hydroxy alprazolam (4-OHALP) while CYP3A4 metabolizes ALP predominantly to its inactive metabolite, 4-OHALP. The expression of CYP3A43 mRNA in human brain samples correlates with formation of relatively higher levels of alpha-OH ALP indicating that individuals who express higher levels of CYP3A43 in the brain would generate larger amounts of alpha-OHALP. Further, the expression of CYP3A43 was relatively higher in brain as compared to liver across different ethnic populations. Since CYP3A enzymes play a prominent role in the metabolism of drugs, the higher expression of CYP3A43 would generate metabolite profile of drugs differentially in human brain and thus impact the pharmacodynamics of psychoactive drugs at the site of action.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

cAMP-response element binding (CREB) proteins are involved in transcriptional regulation in a number of cellular processes (e.g., neural plasticity and circadian rhythms). The CREB family contains activators and repressors that may interact through positive and negative feedback loops. These loops can be generated by auto- and cross-regulation of expression of CREB proteins, via CRE elements in or near their genes. Experiments suggest that such feedback loops may operate in several systems (e.g., Aplysia and rat). To understand the functional implications of such feedback loops, which are interlocked via cross-regulation of transcription, a minimal model with a positive and negative loop was developed and investigated using bifurcation analysis. Bifurcation analysis revealed diverse nonlinear dynamics (e.g., bistability and oscillations). The stability of steady states or oscillations could be changed by time delays in the synthesis of the activator (CREB1) or the repressor (CREB2). Investigation of stochastic fluctuations due to small numbers of molecules of CREB1 and CREB2 revealed a bimodal distribution of CREB molecules in the bistability region. The robustness of the stable HIGH and LOW states of CREB expression to stochastic noise differs, and a critical number of molecules was required to sustain the HIGH state for days or longer. Increasing positive feedback or decreasing negative feedback also increased the lifetime of the HIGH state, and persistence of this state may correlate with long-term memory formation. A critical number of molecules was also required to sustain robust oscillations of CREB expression. If a steady state was near a deterministic Hopf bifurcation point, stochastic resonance could induce oscillations. This comparative analysis of deterministic and stochastic dynamics not only provides insights into the possible dynamics of CREB regulatory motifs, but also demonstrates a framework for understanding other regulatory processes with similar network architecture.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The tail-withdrawal circuit of Aplysia provides a useful model system for investigating synaptic dynamics. Sensory neurons within the circuit manifest several forms of synaptic plasticity. Here, we developed a model of the circuit and investigated the ways in which depression (DEP) and potentiation (POT) contributed to information processing. DEP limited the amount of motor neuron activity that could be elicited by the monosynaptic pathway alone. POT within the monosynaptic pathway did not compensate for DEP. There was, however, a synergistic interaction between POT and the polysynaptic pathway. This synergism extended the dynamic range of the network, and the interplay between DEP and POT made the circuit responded preferentially to long-duration, low-frequency inputs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Withdrawal reflexes of the mollusk Aplysia exhibit sensitization, a simple form of long-term memory (LTM). Sensitization is due, in part, to long-term facilitation (LTF) of sensorimotor neuron synapses. LTF is induced by the modulatory actions of serotonin (5-HT). Pettigrew et al. developed a computational model of the nonlinear intracellular signaling and gene network that underlies the induction of 5-HT-induced LTF. The model simulated empirical observations that repeated applications of 5-HT induce persistent activation of protein kinase A (PKA) and that this persistent activation requires a suprathreshold exposure of 5-HT. This study extends the analysis of the Pettigrew model by applying bifurcation analysis, singularity theory, and numerical simulation. Using singularity theory, classification diagrams of parameter space were constructed, identifying regions with qualitatively different steady-state behaviors. The graphical representation of these regions illustrates the robustness of these regions to changes in model parameters. Because persistent protein kinase A (PKA) activity correlates with Aplysia LTM, the analysis focuses on a positive feedback loop in the model that tends to maintain PKA activity. In this loop, PKA phosphorylates a transcription factor (TF-1), thereby increasing the expression of an ubiquitin hydrolase (Ap-Uch). Ap-Uch then acts to increase PKA activity, closing the loop. This positive feedback loop manifests multiple, coexisting steady states, or multiplicity, which provides a mechanism for a bistable switch in PKA activity. After the removal of 5-HT, the PKA activity either returns to its basal level (reversible switch) or remains at a high level (irreversible switch). Such an irreversible switch might be a mechanism that contributes to the persistence of LTM. The classification diagrams also identify parameters and processes that might be manipulated, perhaps pharmacologically, to enhance the induction of memory. Rational drug design, to affect complex processes such as memory formation, can benefit from this type of analysis.