22 resultados para Dose-effect relationship
Resumo:
The study aim was to determine whether using automated side loader (ASL) trucks in higher proportions compared to other types of trucks for residential waste collection results in lower injury rates (from all causes). The primary hypothesis was that the risk of injury to workers was lower for those who work with ASL trucks than for workers who work with other types of trucks used in residential waste collection. To test this hypothesis, data were collected from one of the nation’s largest companies in the solid waste management industry. Different local operating units (i.e. facilities) in the company used different types of trucks to varying degrees, which created a special opportunity to examine refuse collection injuries and illnesses and the risk reduction potential of ASL trucks.^ The study design was ecological and analyzed end-of-year data provided by the company for calendar year 2007. During 2007, there were a total of 345 facilities which provided residential services. Each facility represented one observation.^ The dependent variable – injury and illness rate, was defined as a facility’s total case incidence rate (TCIR) recorded in accordance with federal OSHA requirements for the year 2007. The TCIR is the rate of total recordable injury and illness cases per 100 full-time workers. The independent variable, percent of ASL trucks, was calculated by dividing the number of ASL trucks by the total number of residential trucks at each facility.^ Multiple linear regression models were estimated for the impact of the percent of ASL trucks on TCIR per facility. Adjusted analyses included three covariates: median number of hours worked per week for residential workers; median number of months of work experience for residential workers; and median age of residential workers. All analyses were performed with the statistical software, Stata IC (version 11.0).^ The analyses included three approaches to classifying exposure, percent of ASL trucks. The first approach included two levels of exposure: (1) 0% and (2) >0 - <100%. The second approach included three levels of exposure: (1) 0%, (2) ≥ 1 - < 100%, and (3) 100%. The third approach included six levels of exposure to improve detection of a dose-response relationship: (1) 0%, (2) 1 to <25%, (3) 25 to <50%, (4) 50 to <75%, (5) 75 to <100%, and (6) 100%. None of the relationships between injury and illness rate and percent ASL trucks exposure levels was statistically significant (i.e., p<0.05), even after adjustment for all three covariates.^ In summary, the present study shows that there is some risk reduction impact of ASL trucks but not statistically significant. The covariates demonstrated a varied yet more modest impact on the injury and illness rate but again, none of the relationships between injury and illness rate and the covariates were statistically significant (i.e., p<0.05). However, as an ecological study, the present study also has the limitations inherent in such designs and warrants replication in an individual level cohort design. Any stronger conclusions are not suggested.^
Resumo:
My dissertation focuses mainly on Bayesian adaptive designs for phase I and phase II clinical trials. It includes three specific topics: (1) proposing a novel two-dimensional dose-finding algorithm for biological agents, (2) developing Bayesian adaptive screening designs to provide more efficient and ethical clinical trials, and (3) incorporating missing late-onset responses to make an early stopping decision. Treating patients with novel biological agents is becoming a leading trend in oncology. Unlike cytotoxic agents, for which toxicity and efficacy monotonically increase with dose, biological agents may exhibit non-monotonic patterns in their dose-response relationships. Using a trial with two biological agents as an example, we propose a phase I/II trial design to identify the biologically optimal dose combination (BODC), which is defined as the dose combination of the two agents with the highest efficacy and tolerable toxicity. A change-point model is used to reflect the fact that the dose-toxicity surface of the combinational agents may plateau at higher dose levels, and a flexible logistic model is proposed to accommodate the possible non-monotonic pattern for the dose-efficacy relationship. During the trial, we continuously update the posterior estimates of toxicity and efficacy and assign patients to the most appropriate dose combination. We propose a novel dose-finding algorithm to encourage sufficient exploration of untried dose combinations in the two-dimensional space. Extensive simulation studies show that the proposed design has desirable operating characteristics in identifying the BODC under various patterns of dose-toxicity and dose-efficacy relationships. Trials of combination therapies for the treatment of cancer are playing an increasingly important role in the battle against this disease. To more efficiently handle the large number of combination therapies that must be tested, we propose a novel Bayesian phase II adaptive screening design to simultaneously select among possible treatment combinations involving multiple agents. Our design is based on formulating the selection procedure as a Bayesian hypothesis testing problem in which the superiority of each treatment combination is equated to a single hypothesis. During the trial conduct, we use the current values of the posterior probabilities of all hypotheses to adaptively allocate patients to treatment combinations. Simulation studies show that the proposed design substantially outperforms the conventional multi-arm balanced factorial trial design. The proposed design yields a significantly higher probability for selecting the best treatment while at the same time allocating substantially more patients to efficacious treatments. The proposed design is most appropriate for the trials combining multiple agents and screening out the efficacious combination to be further investigated. The proposed Bayesian adaptive phase II screening design substantially outperformed the conventional complete factorial design. Our design allocates more patients to better treatments while at the same time providing higher power to identify the best treatment at the end of the trial. Phase II trial studies usually are single-arm trials which are conducted to test the efficacy of experimental agents and decide whether agents are promising to be sent to phase III trials. Interim monitoring is employed to stop the trial early for futility to avoid assigning unacceptable number of patients to inferior treatments. We propose a Bayesian single-arm phase II design with continuous monitoring for estimating the response rate of the experimental drug. To address the issue of late-onset responses, we use a piece-wise exponential model to estimate the hazard function of time to response data and handle the missing responses using the multiple imputation approach. We evaluate the operating characteristics of the proposed method through extensive simulation studies. We show that the proposed method reduces the total length of the trial duration and yields desirable operating characteristics for different physician-specified lower bounds of response rate with different true response rates.
Resumo:
Background. Research has shown that elevations of only 10 mmHg diastolic blood pressure (BP) and 5 mmHg systolic BP are associated with substantial (as large as 50%) increases in risks for cardiovascular disease, a leading cause of death, worldwide. Epidemiological studies have found that particulate matter (PM) increases blood pressure (BP) and many biological mechanisms which may suggest that the organic matter of PM contributes to the increase in BP. To understand components of PM which may contribute to the increase in BP, this study focuses on diesel particulate matter (DPM) and polycyclic aromatic hydrocarbons (PAHs). To our knowledge, there have been only four epidemiological studies on BP and DPM, and no epidemiological studies on BP and PAHs. ^ Objective. Our objective was to evaluate the association between prevalent hypertension and two ambient exposures: DPM and PAHs amongst the Mano a Mano cohort. ^ Methods. The Mano a Mano cohort which was established by the M.D. Anderson Cancer Center in 2001, is comprised of individuals of Mexican origin residing in Houston, TX. Using geographical information systems, we linked modeled annual estimates of PAHs and DPM at the census track level from the U.S. Environmental Protection Agency's National-Scale Air Toxics Assessment to residential addresses of cohort members. Mixed-effects logistic regression models were applied to determine associations between DPM and PAHs and hypertension while adjusting for confounders. ^ Results. Ambient levels of DPM, categorized into quartiles, were not statistically associated with hypertension and did not indicate a dose response relationship. Ambient levels of PAHs, categorized into quartiles, were not associated with hypertension, but did indicate a dose response relationship in multiple models (for example: Q2: OR = 0.98; 95% CI, 0.73–1.31, Q3: OR = 1.08; 95% CI, 0.82–1.41, Q4: OR = 1.26; 95% CI, 0.94–1.70). ^ Conclusion. This is the first assessment to analyze the relationship between ambient levels of PAHs and hypertension and it is amongst a few studies investigating the association between ambient levels of DPM and hypertension. Future analyses are warranted to explore the effects DPM and PAHs using different categorizations in order to clarify their relationships with hypertension.^
Resumo:
There are two practical challenges in the phase I clinical trial conduct: lack of transparency to physicians, and the late onset toxicity. In my dissertation, Bayesian approaches are used to address these two problems in clinical trial designs. The proposed simple optimal designs cast the dose finding problem as a decision making process for dose escalation and deescalation. The proposed designs minimize the incorrect decision error rate to find the maximum tolerated dose (MTD). For the late onset toxicity problem, a Bayesian adaptive dose-finding design for drug combination is proposed. The dose-toxicity relationship is modeled using the Finney model. The unobserved delayed toxicity outcomes are treated as missing data and Bayesian data augment is employed to handle the resulting missing data. Extensive simulation studies have been conducted to examine the operating characteristics of the proposed designs and demonstrated the designs' good performances in various practical scenarios.^
Resumo:
The Phase I clinical trial is considered the "first in human" study in medical research to examine the toxicity of a new agent. It determines the maximum tolerable dose (MTD) of a new agent, i.e., the highest dose in which toxicity is still acceptable. Several phase I clinical trial designs have been proposed in the past 30 years. The well known standard method, so called the 3+3 design, is widely accepted by clinicians since it is the easiest to implement and it does not need a statistical calculation. Continual reassessment method (CRM), a design uses Bayesian method, has been rising in popularity in the last two decades. Several variants of the CRM design have also been suggested in numerous statistical literatures. Rolling six is a new method introduced in pediatric oncology in 2008, which claims to shorten the trial duration as compared to the 3+3 design. The goal of the present research was to simulate clinical trials and compare these phase I clinical trial designs. Patient population was created by discrete event simulation (DES) method. The characteristics of the patients were generated by several distributions with the parameters derived from a historical phase I clinical trial data review. Patients were then selected and enrolled in clinical trials, each of which uses the 3+3 design, the rolling six, or the CRM design. Five scenarios of dose-toxicity relationship were used to compare the performance of the phase I clinical trial designs. One thousand trials were simulated per phase I clinical trial design per dose-toxicity scenario. The results showed the rolling six design was not superior to the 3+3 design in terms of trial duration. The time to trial completion was comparable between the rolling six and the 3+3 design. However, they both shorten the duration as compared to the two CRM designs. Both CRMs were superior to the 3+3 design and the rolling six in accuracy of MTD estimation. The 3+3 design and rolling six tended to assign more patients to undesired lower dose levels. The toxicities were slightly greater in the CRMs.^
Resumo:
The purpose of this study was to assess the effect of maternal pre-pregnancy weight status on the relationship between prenatal smoking and infant birth weight (IBW). Prenatal cigarette smoking and maternal weight exert opposing effects on IBW; smoking decreases birth weight while maternal pre-pregnancy weight is positively correlated with birth weight. As such, mutual effect modification may be sufficiently significant to alter the independent effects of these two birth weight correlates. Finding of such an effect has implications of prenatal smoking cessation education. Perception of risk is an important determinant of smoking cessation, and reduced or low birth weight (LBW) as a smoking-associated risk predominates prenatal smoking counseling and education. In a population such as the US, where obesity is becoming epidemic, particularly among minority and low-income groups, perception of risk may be lowered should increased maternal size attenuate the effect of smoking. Previous studies have not found a significant interaction effect of prenatal smoking and maternal pre-pregnancy weight on IBW; however, use of self-reported smoking status may have biased findings. Reliability of self-reported smoking status reported in the literature is variable, with deception rates ranging from a low of 5% to as high as 16%. This study, using data from a prenatal smoking cessation project, in which smoking status was validated by saliva cotinine, was an opportunity to assess effect modification of smoking and maternal weight using biochemically determined smoking status in lieu of self report. Stratified by saliva cotinine, 151 women from a prenatal smoking cessation cohort, who were 18 years and older and had full-term, singleton births, were included in this study. The effect of smoking in terms of mean birth weight across three levels of maternal pre-pregnancy weight was assessed by general linear modeling procedures, adjusting for other known correlates of IBW. Effect modification was marginally significant, p = .104, but only with control for differential effects among racial/ethnic groups. A smaller than planned sample of nonsmokers, or women who quit smoking during the pregnancy, prohibited rejection of the null hypothesis of no difference in the effect of smoking across levels of pre-pregnancy weight. ^
Resumo:
Childhood obesity in the US has reached epidemic proportions. Minority children are affected the most by this epidemic. Although there is no clear relationship between obesity and fruits and vegetables consumption, studies suggest that eating fruits and vegetables could be helpful in preventing childhood obesity. A few school-based interventions targeting youth have been effective at increasing fruits and vegetables intake.^ In Austin, Texas, the Sustainable Food Center delivered the Sprouting Healthy Kids (SHK) program that targeted low socio-economic status children in four intervention middle schools. The SHK program delivered six intervention components. This school-based intervention included: a cafeteria component, in-class lessons, an after-school garden program, a field trip to a local farm, food tasting, and farmers' visits to schools. This study aimed to determine the effects of the SHK intervention in middle school students' preferences, motivation, knowledge, and self-efficacy towards fruits and vegetables intake, as well as the actual fruits and vegetables intake. The study also aimed to determine the effects of exposure to different doses of the SHK intervention on participants' fruits and vegetable intake.^ The SHK was delivered during Spring 2009. A total of 214 students completed the pre-and-posttest surveys measuring self-report fruits and vegetables intake as well as intrapersonal factors. The results showed that the school cafeteria, the food tasting, the after school program, and the farmers' visits had a positive effect on the participants' motivation, knowledge, and self-efficacy towards fruits and vegetables intake. The farmers' visits and the food tasting components increased participants' fruits and vegetables intake. Exposure to two or more intervention components increased participants' fruits and vegetables intake. The statistically significant dose-response effect size was .352, which suggests that each intervention component increased participants' fruits and vegetables consumption this amount. Certain intervention components were more effective than others. Food tasting and farmers visits increased participants fruits and vegetables intake, therefore these components should be offered in an ongoing basis. This study suggests that exposure to multiple intervention components increased behaviors and attitudes towards fruits and vegetables consumption. Findings are consistent that SHK can influence behaviors of middle school students.^