23 resultados para Dispute by memory


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. This study was planned at a time when important questions were being raised about the adequacy of using one hormone to treat hypothyroidism instead of two. Specifically, this trial aimed to replicate prior findings which suggested that substituting 12.5 μg of liothyronine for 50 μg of levothyroxine might improve mood, cognition, and physical symptoms. Additionally, this trial aimed to extend findings to fatigue. ^ Methods. A randomized, double-blind, two-period, crossover design was used. Hypothyroid patients stabilized on levothyroxine were invited to participate. Thirty subjects were recruited and randomized. Sequence one received their standard levothyroxine dose in one capsule and placebo in another during the first six weeks. Sequence two received their usual levothyroxine dose minus 50 μg in one capsule and 10 μg of liothyronine in another. At the end of the first six week period, subjects were crossed over. T tests were used to assess carry-over and treatment effects. ^ Results. Twenty-seven subjects completed the trial. The majority of completers had an autoimmune etiology. Mean baseline levothyroxine dose was 121 μg/d (±26.0). Subjects reported small increases in fatigue as measured by the Piper Fatigue Scale (0.9, p = 0.09) and in symptoms of depression measured by the Beck Depression Inventory-II (2.3, p = 0.16) as well as the General Health Questionnaire-30 (4.7, p = 0.14) while treated with substitution treatment. However, none of these differences was statistically significant. Measures of working memory were essentially unchanged between treatments. Thyroid stimulating hormone was about twice as high during substitution treatment (p = 0.16). Free thyroxine index was reduced by 0.7 (p < 0.001), and total serum thyroxine was reduced by 3.0 (p < 0.001) while serum triiodothyronine was increased by 20.5 (p < 0.001) on substitution treatment. ^ Conclusions. Substituting an equivalent amount of liothyronine for a portion of levothyroxine in patients with hypothyroidism does not decrease fatigue, symptoms of depression, or improve working memory. However, due to changes in serum hormone levels and small increments in fatigue and depression symptoms on substitution treatment, a question was raised about the role of T3 in the serum. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is well accepted that the hippocampus (HIP) is important for spatial and contextual memories, however, it is not clear if the entorhinal cortex (EC), the main input/output structure for the hippocampus, is also necessary for memory storage. Damage to the EC in humans results in memory deficits. However, animal studies report conflicting results on whether the EC is necessary for spatial and contextual memory. Memory consolidation requires gene expression and protein synthesis, mediated by signaling cascades and transcription factors. Extracellular-signal regulated kinase (ERK) cascade activity is necessary for long-term memory in several tasks, including those that test spatial and contextual memory. In this work, we explore the role of ERK-mediated plasticity in the EC on spatial and contextual memory. ^ To evaluate this role, post-training infusions of reversible pharmacological inhibitors specific for the ERK cascade that do not affect normal neuronal activity were targeted directly to the EC of awake, behaving animals. This technique provides spatial and temporal control over the inhibition of the ERK cascade without affecting performance during training or testing. Using the Morris water maze to study spatial memory, we found that ERK inhibition in the EC resulted in long-term memory deficits consistent with a loss of spatial strategy information. When animals were allowed to learn and consolidate a spatial strategy for solving the task prior to training and ERK inhibition, the deficit was alleviated. To study contextual memory, we trained animals in a cued fear-conditioning task and saw an increase in the activation of ERK in the EC 90 minutes following training. ERK inhibition in the EC over this time point, but not at an earlier time point, resulted in increased freezing to the context, but not to the tone, during a 48-hour retention test. In addition, animals froze maximally at the time the shock was given during training; similar to naïve animals receiving additional training, suggesting that ERK-mediated plasticity in the EC normally suppresses the temporal nature of the freezing response. These findings demonstrate that plasticity in the EC is necessary for both spatial and contextual memory, specifically in the retention of behavioral strategies. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adult monkeys (Macaca mulatta) with lesions of the hippocampal formation, perirhinal cortex, areas TH/TF, as well as controls were tested on tasks of object, spatial and contextual recognition memory. ^ Using a visual paired-comparison (VPC) task, all experimental groups showed a lack of object recognition relative to controls, although this impairment emerged at 10 sec with perirhinal lesions, 30 sec with areas TH/TF lesions and 60 sec with hippocampal lesions. In contrast, only perirhinal lesions impaired performance on delayed nonmatching-to-sample (DNMS), another task of object recognition memory. All groups were tested on DNMS with distraction (dDNMS) to examine whether the use of active cognitive strategies during the delay period could enable good performance on DNMS in spite of impaired recognition memory (revealed by the VPC task). Distractors affected performance of animals with perirhinal lesions at the 10-sec delay (the only delay in which their DNMS performance was above chance). They did not affect performance of animals with areas TH/TF lesions. Hippocampectomized animals were impaired at the 600-sec delay (the only delay at which prevention of active strategies would likely affect their behavior). ^ While lesions of areas TH/TF impaired spatial location memory and object-in-place memory, hippocampal lesions impaired only object-in-place memory. The pattern of results for perirhinal cortex lesions on the different task conditions indicated that this cortical area is not critical for spatial memory. ^ Finally, all three lesions impaired contextual recognition memory processes. The pattern of impairment appeared to result from the formation of only a global representation of the object and background, and suggests that all three areas are recruited for associating information across sources. ^ These results support the view that (1) the perirhinal cortex maintains storage of information about object and the context in which it is learned for a brief period of time, (2) areas TH/TF maintain information about spatial location and form associations between objects and their spatial relationship (a process that likely requires additional time) and (3) the hippocampal formation mediates associations between objects, their spatial relationship and the general context in which these associations are formed (an integrative function that requires additional time). ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neuropathic pain is a debilitating neurological disorder that may appear after peripheral nerve trauma and is characterized by persistent, intractable pain. The well-studied phenomenon of long-term hyperexcitability (LTH), in which sensory somata become hyperexcitable following peripheral nerve injury may be important for both chronic pain and long-lasting memory formation, since similar cellular alterations take place after both injury and learning. Though axons have previously been considered simple conducting cables, spontaneous afferent signals develop from some neuromas that form at severed nerve tips, indicating intrinsic changes in sensory axonal excitability may contribute to this intractable pain. Here we show that nerve transection, exposure to serotonin, and transient depolarization induce long-lasting sensory axonal hyperexcitability that is localized to the treated nerve segment and requires local translation of new proteins. Long-lasting functional plasticity may be a general property of axons, since both injured and transiently depolarized motor axons display LTH as well. Axonal hyperexcitability may represent an adaptive mechanism to overcome conduction failure after peripheral injury, but also displays key features shared with cellular analogues of memory including: site-specific changes in neuronal function, dependence on transient, focal depolarization for induction, and requirement for synthesis of new proteins for expression of long-lasting effects. The finding of axonal hyperexcitability after nerve injury sheds new light on the clinical problem of chronic neuropathic pain, and provides more support for the hypothesis that mechanisms of long-term memory storage evolved from primitive adaptive responses to injury. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While it is commonly assumed that brain systems receive and process information from other brain systems, there are few examples of tractable behaviors that allow such interactions to be studied. With the experiments presented in this dissertation we provide evidence that trace eyelid conditioning, a simple form of associative learning, is mediated by cerebellar learning in response to the output of persistent neural activity in the prefrontal cortex (PFC) and thus may be useful in analyses of PFC-cerebellar interactions. In a series of stimulation and reversible inactivation experiments we provide evidence that trace eyelid conditioning is mediated by cerebellar learning in response to a learned forebrain-driven input. Specifically, we provide evidence that this input is driven by the medial PFC and persists through the stimulus free trace interval of trace eyelid conditioning. In the next set of experiments we show that directly presenting the cerebellum with a pattern of input that mimics the classic persistent activity of PFC neurons reconstitutes trace eyelid conditioning, as assessed by a number of stringent tests. Finally, in set of reversible inactivation experiments, we provide evidence that bidirectional learning during trace eyelid conditioning involves the omission of the persistent, PFC-driven input that the cerebellum learns and responds to during trace eyelid conditioning. Given that persistent activity in PFC is often associated with working memory, these experiments suggest that trace eyelid conditioning may be useful in analyses of working memory mechanisms, cerebellar information processing and their interaction. To facilitate future analyses, we conclude with a working hypothesis of forebrain-cerebellum interactions during trace eyelid conditioning that addresses how persistent activity in PFC is induced and how the cerebellum decodes and uses PFC-driven input. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

T cell activation requires antigen-specific T cell receptor signals that spatially and temporally coincide with a second costimulatory signal. CD28 and α4β1 integrin both function as T cell costimulators, but their individual mechanisms remain elusive. By directly comparing CD3-dependent functions and signaling pathways employed by these two costimulatory receptors, aspects of their individual signaling mechanisms are explored. We determined that CD28 and α4β1 integrins both use Src-family kinase Lck and MAPK Erk, but to different extents and functional ends. After identifying functional differences between CD28 and integrin costimulatory pathways, the focus of the study turned to integrin signaling in naïve and memory T cell subsets. CD45RO T cells are fully co-activated by natural β1 integrin ligands fibronectin (FN) and VCAM-1, β1 monoclonal antibody 33B6, as well as α4β1 monoclonal antibody 19H8 which binds a combinatorial epitope of the α4β1 heterodimer. While CD28 fully costimulates CD45RA T cells, the degree of activation from integrin ligands varies. FN costimulates CD3-dependent proliferation, IL-2 secretion, and early activation markers CD25 and CD69. However, β1 antibody 33B6, which binds to the same T cell integrins (α4β1 and α5β1) as natural ligand FN, failed to costimulate proliferation or IL-2 in the CD45RA subset, but retained the ability to regulate CD25 and CD69. Unique aspects of 19H8 signaling involve early Erk activation and IL-2 independent proliferation. Signaling defects through 33B6 ligation correlates with poor adhesion under fluid flow conditions, suggesting a cytoskeletal basis for signaling. All together, these data provide evidence for a mechanism of α4β1 integrin signaling and describe functional differences between naïve and memory T cells. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Considerable evidence suggests that central cholinergic neurons participate in either acquisition, storage or retrieval of information. Experiments were designed to evaluate information processing in mice following either reversible or irreversible impairment in central cholinergic activity. The cholinergic receptor antagonists, atropine and methylatropine were used to reversibly inhibit cholinergic transmission. Irreversible impairment in central cholinergic function was achieved by central administration of the cholinergic-specific neurotoxins, N-ethyl-choline aziridinium (ECA) and N-ethyl-acetylcholine aziridinium (EACA).^ ECA and EACA appear to act by irreversible inhibition of high affinity choline uptake (proposed rate-limiting step in acetylcholine synthesis). Intraventricular administration of ECA or EACA produced persistent reduction in hippocampal choline acetyltransferase activity. Other neuronal systems and brain regions showed no evidence of toxicity.^ Mice treated with either ECA or EACA showed behavioral deficits associated with cholinergic dysfunction. Passive avoidance behavior was significantly impaired by cholinotoxin treatment. Radial arm maze performance was also significantly impaired in cholinotoxin-treated animals. Deficits in radial arm maze performance were transient, however, such that rapid and apparent complete behavioral recovery was seen during retention testing. The centrally active cholinergic receptor antagonist atropine also caused significant impairment in radial arm maze behavior, while equivalent doses of methylatropine were without effect.^ The relative effects of cholinotoxin and receptor antagonist treatment on short-term (working) memory and long-term (reference) memory in radial arm maze behavior were examined. Maze rotation studies indicated that there were at least two different response strategies which could result in accurate maze performance. One strategy involved the use of response algorithms and was considered to be a function of reference memory. Another strategy appeared to be primarily dependent on spatial working memory. However, all behavioral paradigms with multiple trails have reference memory requirements (i.e. information useful over all trials). Performance was similarly affected following either cholinotoxin or anticholinergic treatment, regardless of the response strategy utilized. In addition, rates of behavioral recovery following cholinotoxin treatment were similar between response groups. It was concluded that both cholinotoxin and anticholinergic treatment primarily resulted in impaired reference memory processes. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: HIV associated B cell exhaustion is a notable characteristic of HIV viremic adults. However, it is not known if such alterations are present in perinatal HIV infected children, whose viral dynamics differs from those seen in adults. In the present study we perform an analysis of B cells subsets and measure antigen-specific memory B cells (MBC) in a pediatric HIV infected cohort. ^ Methods: Peripheral mononuclear cells (PBMC) of perinatal HIV infected individuals are characterized into naïve (CD21hi/CD27−), classic (CD27+), tissue like (CD21lo/CD27 −) and activated MBC (CD27+CD21− ) by FACS. A memory ELISPOT assay is used to detect antibody secreting cells. We measure total IgG and antibodies specific for influenza, HBV, mumps, measles, rubella and VZV. Memory was expressed as spot forming cells (SPC) /million of PBMC. Wilcoxon rank-sum was used to compare unpaired groups and linear regression analysis was used to determine predictors of B cell dysfunction ^ Results: 41 HIV perinatal infected children are included (51.2% females and 65.9% Black). Age at study is median (range) 8.78 years (4.39-11.57). At the time of testing they have a CD4% of 30.9 (23.2-39.4), a viral load (VL) of 1.95 log10 copies/ml (1.68-3.29) and a cumulative VL of 3.4 log10 copy × days (2.7-4.0). Ninety two percent of the children are on cARV for > 6 months. Overall, HIV+ children compared with controls have a significant lower number of IgG and antigen specific SFC. In addition, they have a lower proportion of classical MBC 12.9 (8.09-19.85) vs 29.4 (18.7-39.05); 0.01, but a significant higher proportion of tissue like memory MBC 6.01 (2.79-12.7) vs 0.99 (0.87-1.38); 0.003, compared with controls. Patients are parsed on VL (<400 and ≥ 400 copies/ml) with the objective to evaluate the effect of VL on B cell status. Patients with a VL ≥ 400 copies/ml have a significantly lower IgG, HBV, measles, rubella and VZV SPC compared with those with a VL < 400 copies/ml. There are no significant differences in B cell subpopulations between the groups. A moderate negative correlation was observed between the time of cARV initiation and the frequency of IgG memory B cells, suggesting that early initiation of cARV appears to lead to a better functionality of the IgG memory B cells (P=0.05). A statistically significant positive correlation was observed between the total number of IgG memory cells and the number of antigen-specific memory B cells/SPCs. Suggesting that the progressive recovery of the IgG memory B cell pull goes along with a progressive increase in the number of antigen-specific SPCs. ^ Conclusion: A pediatric cohort in overall good status with respect to HIV infection and on ART has defects in B cell function and numbers (reduced total and antigen specific MBC and increased tissue like and reduced classical MBC).^