22 resultados para Dingman, Dean
Resumo:
Resistance of tumors to pharmacologic agents poses a significant problem in the treatment of human malignancies. This study overviews the scope of clinical resistance and focuses upon current research attempts toward investigation of the phenomenon of multidrug resistance (MDR).^ The objective of this investigation was to determine whether gene amplification had a role in the development of the MDR phenotype in Chinese hamster ovary cells (CHO) primarily selected for resistance to vincristine (VCR). A DNA fragment, previously shown to be amplified in two independently derived Chinese hamster cell lines exhibiting the MDR phenotype, was also amplified in VCR hamster lines. Sequences flanking this fragment were shown to contain coding information for a 4.3 kb transcript overproduced in VCR cells. These sequences were not enriched in double minute DNA preparations isolated from VCR cells. There was an approximately forty-fold increase in both the level of gene amplification and transcript overproduction in the VCR cell lines, independent of the level of primary resistance. This DNA amplification and overproduction of the 4.3 kb transcript was also demonstrated in CHO cells independently selected for resistance to Adriamycin and vinblastine.^ All the DNA sequences of two hamster cDNA clones containing 785 and 932 base pair inserts showed direct homology to the published mouse mdr sequences (about 90%). This sequence conservation held for only portions of the gene when the human mdr1 sequences were compared with those from either the mouse or hamster.^ Somatic cell hybrids, constructed between VCR CHO cells and sensitive murine cells, were used to determine whether there was a functional relationship between the chromosome bearing the amplified sequences and the MDR phenotype. Concordant segregation between vincristine resistance, the MDR phenotype, the presence of MDR-associated amplified sequences, overexpression of the mRNA encoded by these sequences, overexpression of the mRNA encoded by these sequences, and CHO chromosome Z1 was consistent with the hypothesis that there is an amplified gene on chromosome Z1 of the VCR CHO cells which is responsible for MDR in these cells. ^
Resumo:
This retrospective, case-control study investigated the effectiveness of the Houston, Texas Ask Your Nurse Advice Line (AYN) in diverting callers with non-emergent medical conditions away from the emergency department (ED). After asking callers a series of questions, AYN nurses evaluate the medical condition and make recommendations for appropriate care, e.g., home care, see a clinic physician, or visit the ED. To evaluate the AYN, the rate of caller ED visits before accessing the AYN for the first time was compared to the caller ED visit rate afterwards. The pre-post rate change was compared to that of a control group of similar caller age, race, gender, and insurance status drawn from a Harris County Hospital District HCHD database. ^ The treatment group (AYN caller) had a 66% reduction in ED visits after the first AYN call compared to an 18% drop in ED visits among control group subjects during the same time period. Study results were presented to HCHD staff on August 30th, 2007 and recommendations were made for future studies that would provide a basis for policy development. ^
Resumo:
Necrotizing enterocolitis is a common gastrointestinal disease associated with high mortality and morbidity among preterm infants. This was a systematic literature review that evaluated whether the administration of probiotic supplements is of benefit in the prevention of NEC. The search was narrowed to randomized clinical trials identified through The Cochrane Central Register of Controlled Trials, U.S. National Institute of Health clinical trials registry database, Pub Med and OVID MEDLINE databases. Inclusion criteria were: prospective, randomized clinical trials that administered probiotics as a preventive measure against NEC for infants of early gestational age (<35 wks) and/or low birth weight (<1500g), maintained NEC as the primary measured outcome, used Bell’s classification for NEC diagnosis with reports of stage 2 NEC or higher, and began probiotic administration within 10 days of life. Trials were excluded if participant enrollment was fewer than 100 infants, published before the year 2000, or probiotic supplementation was discontinued after less than seven consecutive days. Based on specific study characteristics, each resulting article was then judged by two authors for study quality. The search was further narrowed to studies of either high or moderate quality, which were then summarized in a set of tables based on study characteristics and results. From an initial set of 20 identified studies, five clinical trials met all criteria; each was discussed thoroughly based on trial limitations, strengths and comparisons to other included publications. Based on this review, the weight of evidence appears to support the use of probiotic supplementation in preterm infants as a preventive measure against NEC. Recommendations for future research were also provided.^
Resumo:
Greetings Pacesetter Grads Feel Boost in Entry to Nursing Workforce UTHealth-UH Dual Bachelors Program for First-Time Students UTHealth School of Nursing – By the Numbers 2012 PARTNERS Spring Luncheon – honored “Generations of Nurses” – guest speaker Naomi Judd UT Health Services Expands Care for Patients When I Grow Up, – A UTHealth Nursing Student’s Story Donors Support Start of New Accelerated Family Nurse Practitioner Program Giuseppe Colasurdo, M.D. – Appointed Sixth President in U THealth’s 40-Year History Dean Starck Named to UT Academy of Health Science Education, Marcus Honored by Regents for Outstanding Teaching Students Select Two for 2012 McGovern Awards Endowed scholarships Former home of School of Nursing for 30 years disappears in dust cloud Ruppert Named 2012 FAAN
Resumo:
An oral interview with Dr. Anna Steinberger, who taught and conducted basic research in Reproductive Biology and served as Assistant Dean for Faculty Affairs at UT Medical School-Houston. Her research yielded over 250 scientific articles, books, and book chapters for which she received numerous awards and recognitions in the USA and abroad.
Resumo:
DEVELOPMENT AND IMPLEMENTATION OF A DYNAMIC HETEROGENEOUS PROTON EQUIVALENT ANTHROPOMORPHIC THORAX PHANTOM FOR THE ASSESSMENT OF SCANNED PROTON BEAM THERAPY by James Leroy Neihart, B.S. APPROVED: ______________________________David Followill, Ph.D. ______________________________Peter Balter, Ph.D. ______________________________Narayan Sahoo, Ph.D. ______________________________Kenneth Hess, Ph.D. ______________________________Paige Summers, M.S. APPROVED: ____________________________ Dean, The University of Texas Graduate School of Biomedical Sciences at Houston DEVELOPMENT AND IMPLEMENTATION OF A DYNAMIC HETEROGENEOUS PROTON EQUIVALENT ANTHROPOMORPHIC THORAX PHANTOM FOR THE ASSESSMENT OF SCANNED PROTON BEAM THERAPY A THESIS Presented to the Faculty of The University of Texas Health Science Center at Houston andThe University of TexasMD Anderson Cancer CenterGraduate School of Biomedical Sciences in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE by James Leroy Neihart, B.S. Houston, Texas Date of Graduation August, 2013 Acknowledgments I would like to acknowledge my advisory committee members, chair David Followill, Ph.D., Peter Balter, Ph.D, Narayan Sahoo, Ph.D., Kenneth Hess, Ph.D., Paige Summers M.S. and, for their time and effort contributed to this project. I would additionally like to thank the faculty and staff at the PTC-H and the RPC who assisted in many aspects of this project. Falk Pӧnisch, Ph.D. for his breath hold proton therapy treatment expertise, Matt Palmer and Jaques Bluett for proton dosimetry assistance, Matt Kerr for verification plan assistance, Carrie Amador, Nadia Hernandez, Trang Nguyen, Andrea Molineu, Lynda McDonald for TLD and film dosimetry assistance. Finally, I would like to thank my wife and family for their support and encouragement during my research and studies. Development and implementation of a dynamic heterogeneous proton equivalent anthropomorphic thorax phantom for the assessment of scanned proton beam therapy By: James Leroy Neihart, B.S. Chair of Advisory Committee: David Followill, Ph.D Proton therapy has been gaining ground recently in radiation oncology. To date, the most successful utilization of proton therapy is in head and neck cases as well as prostate cases. These tumor locations do not suffer from the resulting difficulties of treatment delivery as a result of respiratory motion. Lung tumors require either breath hold or motion tracking, neither of which have been assessed with an end-to-end phantom for proton treatments. Currently, the RPC does not have a dynamic thoracic phantom for proton therapy procedure assessment. Additionally, such a phantom could be an excellent means of assessing quality assurance of the procedures of proton therapy centers wishing to participate in clinical trials. An eventual goal of this phantom is to have a means of evaluating and auditing institutions for the ability to start clinical trials utilizing proton therapy procedures for lung cancers. Therefore, the hypothesis of this study is that a dynamic anthropomorphic thoracic phantom can be created to evaluate end-to-end proton therapy treatment procedures for lung cancer to assure agreement between the measured and calculated dose within 5% / 5 mm with a reproducibility of 2%. Multiple materials were assessed for thoracic heterogeneity equivalency. The phantom was designed from the materials found to be in greatest agreement. The phantom was treated in an end-to-end treatment four times, which included simulation, treatment planning and treatment delivery. Each treatment plan was delivered three times to assess reproducibility. The dose measured within the phantom was compared to that of the treatment plan. The hypothesis was fully supported for three of the treatment plans, but failed the reproducibility requirement for the most aggressive treatment plan.
Resumo:
The neu gene encodes the transmembrane tyrosine kinase growth factor receptor, p185. To study neu induced cellular transformation, we developed revertant cells from the neu transformed NIH 3T3 cell line, B104-1-1, by treating the cells with the chemical mutagen ethylmethane sulfonate. The morphologically normal revertant cells were first selected by their ability to either attach to culture plates or survive in the presence of the cytotoxic reagents colchicine or 5-fluoro-2deoxyuridine. Two of the 21 candidate revertant cell lines isolated were further characterized and were found to lose their anchorage independence and ability to grow in 1% calf serum, indicating that they were nontransformed even though they still expressed p185 oncoprotein. The tyrosine residues of p185 in these two revertants were underphosphorylated, which may have contributed to their nontransformed status. Also, the p185 oncoprotein lacked significant tyrosine kinase activity. In addition, these revertants also resisted transformation by neu and several additional oncogenes (H-ras, N-ras, v-mos, v-abl, and v-fos) as determined by focus forming assays. These results indicated that we had successfully developed, from neu transformed cells, revertants which exhibited defective tyrosine phosphorylation and kinase activity of the neu oncoprotein. The results also suggested that neu and several other oncogenes may share common elements in their pathways for the induction of cellular transformation. ^