19 resultados para DNA Fragment Assembly
Resumo:
Filamin is a high molecular weight (2 x 250,000) actin crosslinking protein found in a wide variety of cells and tissues. The most striking feature of filamin is its ability to crosslink F-actin filaments and cause ATP-independent gelation and contraction of F-actin solutions. The gelation of actin filaments by filamin involves binding to actin and crosslinking of the filaments by filamin self-association. In order to understand the role of filamin-actin interactions in the regulation of cytoskeletal assembly, two approaches were used. First, the structural relationship between self-association and actin-binding was examined using proteolytic fragments of filamin. Treatment of filamin with papain generated two major fragments, 90Kd and 180Kd. Upon incubation of the papain digest with F-actin and centrifugation at 100,000 x g, only the 180Kd fragment co-sedimented with F-actin. The binding of the 180Kd fragment, P180, was similar to native filamin in its sensitivity to ionic strength. Analytical gel filtration studies indicated that, unlike native filamin, P180 was monomeric and did not self-associate. Thermolysin treatment of P180 produced a 170Kd fragment, PT170, which no longer bound and co-sedimented with F-actin. These results suggested that filamin contained a discrete actin-binding domain. In order to locate the actin-binding domain, affinity purified antibodies to the papain and thermolysin sensitive regions of filamin were used in conjunction with filamin fragments generated by digestion with S. aureus V8 protease and elastase. The results indicated that the papain and thermolysin cleavage sites were close together, and, most likely, within 10Kd of one another. Taken together, these data suggest that filamin contains a discrete, internal actin-binding domain. The second approach was to use the non-crosslinking fragment P180 to develop a quantitative assay of filamin-actin binding. The binding of ('14)C-carboxyalkylated P180 was examined using the co-sedimentation assay. ('14)C-P180 binding to actin was equivalent to that of unlabelled P180 and exhibited comparable sensitivity of binding to changes in ionic strength. Within 5 min. of incubation the process had reached equilibrium. The specificity of binding was shown by the lack of binding of ('14)C-PT170. The binding of ('14)C-P180 was found to be a reversible and saturable process, with a K(,d) of 2 x 10('-7) M. . . . (Author's abstract exceeds stipulated maximum length. Discontinued here with permission of author.) UMI ^
Involvement of HMGB1 in the repair of DNA adducts and the responses to DNA damage in mammalian cells
Resumo:
High mobility group protein B1 (HMGB1) is a multifunctional protein with roles in chromatin structure, transcription, V(D)J recombination, and inflammation. HMGB1 also binds to and bends damaged DNA, but the biological consequence of this interaction is not clearly understood. We have shown previously that HMGB1 binds cooperatively with nucleotide excision repair (NER) damage recognition proteins XPA and RPA to triplex-directed psoralen DNA interstrand crosslinks (ICLs). Based on this we hypothesized that HMGB1 is enhancing the repair of DNA lesions, and through this role, is affecting DNA damage-induced mutagenesis and cell survival. Because HMGB1 is also a chromatin protein, we further hypothesized that it is acting to facilitate chromatin remodeling at the site of the DNA damage, to allow access of the repair machinery to the DNA lesion. We demonstrated here that HMGB1 could bind to triplex-directed psoralen ICLs in a complex with NER proteins XPC-RAD23B, XPA and RPA, which occurred in the presence or absence of DNA. Supporting these findings, we demonstrated that HMGB1 enhanced repair of triplex-directed psoralen ICLs (by nucleotide incorporation), as well as removal of UVC irradiation-induced DNA lesions from the genome (by radioimmunoassay). We also explored HMGB1's role in chromatin remodeling upon DNA damage. Immunoblotting demonstrated that, in contrast to HMGB1 proficient cells, cells lacking HMGB1 showed no increase in histone acetylation after UVC irradiation. Additionally, purified HMGB1 protein enhanced chromatin formation in an in vitro chromatin assembly system. However, HMGB1 also has a role in DNA repair in the absence of chromatin, as shown by measuring UVC-induced nucleotide incorporation on a naked substrate. Upon exploration of HMGB1's effect on several cellular outcomes of DNA damage, we found that mammalian cells lacking HMGB1 were hypersensitive to DNA damage induced by psoralen plus UVA irradiation or UVC radiation, showing less survival and increased mutagenesis. These results reveal a new role for HMGB1 in the error-free repair of DNA lesions in a chromosomal context. As strategies targeting HMGB1 are currently in development for treatment of sepsis and rheumatoid arthritis, our findings draw attention to potential adverse side effects of anti-HMGB1 therapy in patients with inflammatory diseases. ^
Resumo:
The effect of DNA cytosine methylation on H-ras promoter activity was assessed using a transient expression system employing the plasmid H-rasCAT (NaeI H-ras promoter linked to the chloramphenicol acetyltransferase (CAT) gene). This 551 bp promoter is 80% GC rich, enriched with 168 CpG dinucleotides, and contains six functional GC box elements which represent major DNA methylation target sites. Prokaryotic methyltransferases HhaI (CGm$\sp5$CG) and HpaII (Cm$\sp5$CGG) alone or in combination with a human placental methyltransferase (HP MTase) were used to introduce methyl groups at different CpG sites within the promoter. To test for functional promoter activity, the methylated plasmids were introduced into CV-1 cells and CAT activity assessed 48 h post-transfection. Methylation at specific HhaI and HpaII sites reduced CAT expression by 70%, whereas more extensive methylation at generalized CpG sites with HP MTase inactivated the promoter $>$95%. The inhibition of H-ras promoter activity was not attributable to methylation-induced differences in DNA uptake or stability in the cell, topological form of the plasmid, or methylation effects in nonpromoter regions. We also observed that DNA cytosine methylation of a 360 bp promoter fragment by HP MTase induced a local change in DNA conformation. Using three independent methodologies (nitrocellulose filter binding assays, gel mobility shifts, and Southwestern blots), we determined that this change in promoter conformation affected the interaction of nuclear proteins with cis-regulatory sequences residing in the promoter region. The results provide evidence to suggest that DNA methylation may regulate gene expression by inducing changes in local promoter conformation which in turn alters the interactions between DNA and protein factors required for transcription. The results provide supportive evidence for the hypothesis of Cedar and Riggs, who postulated that DNA methylation may regulate gene expression by altering the binding affinities of proteins for DNA. ^
Resumo:
Many eukaryotic promoters contain a CCAAT element at a site close ($-$80 to $-$120) to the transcription initiation site. CBF (CCAAT Binding Factor), also called NF-Y and CP1, was initially identified as a transcription factor binding to such sites in the promoters of the Type I collagen, albumin and MHC class II genes. CBF is a heteromeric transcription factor and purification and cloning of two of the subunits, CBF-A and CBF-B revealed that it was evolutionarily conserved with striking sequence identities with the yeast polypeptides HAP3 and HAP2, which are components of a CCAAT binding factor in yeast. Recombinant CBF-A and CBF-B however failed to bind to DNA containing CCAAT sequences. Biochemical experiments led to the identification of a third subunit, CBF-C which co-purified with CBF-A and complemented the DNA binding of recombinant CBF-A and CBF-B. We have recently isolated CBF-C cDNAs and have shown that bacterially expressed purified CBF-C binds to CCAAT containing DNA in the presence of recombinant CBF-A and CBF-B. Our experiments also show that a single molecule each of all the three subunits are present in the protein-DNA complex. Interestingly, CBF-C is also evolutionarily conserved and the conserved domain between CBF-C and its yeast homolog HAP5 is sufficient for CBF-C activity. Using GST-pulldown experiments we have demonstrated the existence of protein-protein interaction between CBF-A and CBF-C in the absence of CBF-B and DNA. CBF-B on other hand, requires both CBF-A and CBF-C to form a ternary complex which then binds to DNA. Mutational studies of CBF-A have revealed different domains of the protein which are involved in CBF-C interaction and CBF-B interaction. In addition, CBF-A harbors a domain which is involved in DNA recognition along with CBF-B. Dominant negative analogs of CBF-A have also substantiated our initial observation of assembly of CBF subunits. Our studies define a novel DNA binding structure of heterotrimeric CBF, where the three subunits of CBF follow a particular pathway of assembly of subunits that leads to CBF binding to DNA and activating transcription. ^