17 resultados para Cytotoxic T Lymphocyte
Resumo:
T cell activation and expansion is essential for immune response against foreign antigens. However, uncontrolled T cell activity can be manifested as a number of lymphoid derived diseases such as autoimmunity, graft versus host disease, and lymphoma. The purpose of this research was to test the central hypothesis that the Jak3/Stat5 pathway is critical for T cell function. To accomplish this objective, two novel Jak3 inhibitors, AG490 and PNU156804, were identified and their effects characterized on Jak3/Stat5 activation and T cell growth. Inhibition of Jak3 selectively disrupted primary human T lymphocyte growth in response to Interleukin-2 (IL-2), as well as other γ c cytokine family members including IL-4, IL-7, IL-9, and IL-15. Inhibition of Jak3 ablated IL-2 induced Stat5 but not TNF-α mediated NF-κβ DNA binding. Loss of Jak3 activity did not affect T cell receptor mediated signals including activation of p56Lck and Zap70, or IL-2 receptor a chain expression. To examine the effects of Jak3/Stat5 inhibition within a mature immune system, we employed a rat heart allograft model of Lewis (RT1 1) to ACI (RT1a). Heart allograft survival was significantly prolonged following Jak3/Stat5 inhibition when rats were treated with AG490 (20mg/kg) or PNU156804 (80mg/kg) compared to non-treated control animals. This effect was synergistically potentiated when Jak3 inhibitors were used in combination with a signal 1/2 disrupter, cyclosporine, but only additively potentiated with another signal 3 inhibitor, rapamycin. This suggested that sequential inhibition of T cell function is more effective. To specifically address the role of Stat5 in maintaining T cell activity, novel Stat5 antisense oligonucleotides were synthesized and characterized in vitro. Primary human T cells and T-cell tumor lines treated with Stat5 antisense oligonucleotide (7.5 μM) rapidly underwent apoptosis, while no changes in cell cycle were observed as measured by FACS analysis utilizing Annexin-V-Fluorescein and Propidium iodide staining. Evidence is provided to suggest that caspase 8 and 9 pathways mediate this event. Thus, Stat5 may act rather as a negative regulator of apoptotic signals and not as a positive regulator of cell cycle as previously proposed. We conclude that the Jak3/Stat5 pathway is critical for γc cytokine mediated gene expression necessary for T cell expansion and normal immune function and represents an therapeutically relevant effector pathway to combat T cell derived disease. ^
Resumo:
IL-24 is an unusual member of the IL-10 family, which is considered a Th1 cytokine that exhibits tumor cell cytotoxicity. I describe the purification of this novel cytokine from the supernatant of IL-24 gene transfected human embryonic kidney cells and define the biochemical and functional properties of the soluble, human IL-24 protein. ^ I showed IL-24 non-covalently associates with bovine albumin. Immunoaffinity purification followed by cation exchange chromatography resulted in the significant enrichment of N-glycosylated IL-24. This protein elicited dose-dependent secretion of TNF-α and IL-6 from purified human monocytes and TNF-α secretion from PMA differentiated U937 cells. I showed this same protein was cytotoxic to melanoma tumor cells via the induction of IFN-α. ^ I reported IL-24 associates as at least two disulfide linked, N-glycosylated dimers. Enzymatic removal of N-linked-glycosylation from purified IL-24 partially diminished its cytokine and cytotoxic functions. Disruption of IL-24 dimers via reduction and alkylation of intermolecular disulfide bonds nearly abolished IL-24s cytokine function. ^ I elucidated IL-24 induced TNF-α secretion was pSTAT1, pSTAT3 as well as the class II heterodimeric receptors IL-20R1/IL-22R2 independent. I identified a requirement for the heterodimer of Toll-like Receptors 1 and 2 for IL-24s cytokine function and show a physical interaction between IL-24 and the extracellular domain of TLR-1. ^ Thus, I demonstrated that purified N-glycosylated, soluble, dimeric, human IL-24 exhibits both immunomodulatory and anti-cancer activities and these functions remain associated during purification. IL-24 induced TNF-α secretion required an interaction with the heterodimeric receptor TLR-1/2 and IL-24s cytotoxic affect to melanoma tumor cells was in part due to its induction of IFN-β. ^