19 resultados para Congestive Heart Failure


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Preventable Hospitalizations (PHs) are hospitalizations that can be avoided with appropriate and timely care in the ambulatory setting and hence are closely associated with primary care access in a community. Increased primary care availability and health insurance coverage may increase primary care access, and consequently may be significantly associated with risks and costs of PHs. Objective. To estimate the risk and cost of preventable hospitalizations (PHs); to determine the association of primary care availability and health insurance coverage with the risk and costs of PHs, first alone and then simultaneously; and finally, to estimate the impact of expansions in primary care availability and health insurance coverage on the burden of PHs among non-elderly adult residents of Harris County. Methods. The study population was residents of Harris County, age 18 to 64, who had at least one hospital discharge in a Texas hospital in 2008. The primary independent variables were availability of primary care physicians, availability of primary care safety net clinics and health insurance coverage. The primary dependent variables were PHs and associated hospitalization costs. The Texas Health Care Information Collection (THCIC) Inpatient Discharge data was used to obtain information on the number and costs of PHs in the study population. Risk of PHs in the study population, as well as average and total costs of PHs were calculated. Multivariable logistic regression models and two-step Heckman regression models with log-transformed costs were used to determine the association of primary care availability and health insurance coverage with the risk and costs of PHs respectively, while controlling for individual predisposing, enabling and need characteristics. Predicted PH risk and cost were used to calculate the predicted burden of PHs in the study population and the impact of expansions in primary care availability and health insurance coverage on the predicted burden. Results. In 2008, hospitalized non-elderly adults in Harris County had 11,313 PHs and a corresponding PH risk of 8.02%. Congestive heart failure was the most common PH. PHs imposed a total economic burden of $84 billion at an average of $7,449 per PH. Higher primary care safety net availability was significantly associated with the lower risk of PHs in the final risk model, but only in the uninsured. A unit increase in safety net availability led to a 23% decline in PH odds in the uninsured, compared to only a 4% decline in the insured. Higher primary care physician availability was associated with increased PH costs in the final cost model (β=0.0020; p<0.05). Lack of health insurance coverage increased the risk of PH, with the uninsured having 30% higher odds of PHs (OR=1.299; p<0.05), but reduced the cost of a PH by 7% (β=-0.0668; p<0.05). Expansions in primary care availability and health insurance coverage were associated with a reduction of about $1.6 million in PH burden at the highest level of expansion. Conclusions. Availability of primary care resources and health insurance coverage in hospitalized non-elderly adults in Harris County are significantly associated with the risk and costs of PHs. Expansions in these primary care access factors can be expected to produce significant reductions in the burden of PHs in Harris County.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Cancer cachexia is a common syndrome complex in cancer, occurring in nearly 80% of patients with advanced cancer and responsible for at least 20% of all cancer deaths. Cachexia is due to increased resting energy expenditure, increased production of inflammatory mediators, and changes in lipid and protein metabolism. Non-steroidal anti-inflammatory drugs (NSAIDs), by virtue of their anti-inflammatory properties, are possibly protective against cancer-related cachexia. Since cachexia is also associated with increased hospitalizations, this outcome may also show improvement with NSAID exposure. ^ Design. In this retrospective study, computerized records from 700 non-small cell lung cancer patients (NSCLC) were reviewed, and 487 (69.57%) were included in the final analyses. Exclusion criteria were severe chronic obstructive pulmonary disease, significant peripheral edema, class III or IV congestive heart failure, liver failure, other reasons for weight loss, or use of research or anabolic medications. Information on medication history, body weight and hospitalizations was collected from one year pre-diagnosis until three years post-diagnosis. Exposure to NSAIDs was defined if a patient had a history of being treated with NSAIDs for at least 50% of any given year in the observation period. We used t-test and chi-square tests for statistical analyses. ^ Results. Neither the proportion of patients with cachexia (p=0.27) nor the number of hospitalizations (p=0.74) differed among those with a history of NSAID use (n=92) and those without (n=395). ^ Conclusions. In this study, NSAID exposure was not significantly associated with weight loss or hospital admissions in patients with NSCLC. Further studies may be needed to confirm these observations.^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

When subjected to increased workload, the heart responds metabolically by increasing its reliance on glucose and structurally by increasing the size of myocytes. Whether changes in metabolism regulate the structural remodeling process is unknown. A likely candidate for a link between metabolism and growth in the heart is the mammalian target of rapamycin (mTOR), which couples energy and nutrient metabolism to cell growth. Recently, sustained mTOR activation has also been implicated in the development of endoplasmic reticulum (ER) stress. We explored possible mechanisms by which acute metabolic changes in the hemodynamically stressed heart regulate mTOR activation, ER stress and cardiac function in the ex vivo isolated working rat heart. Doubling the heart’s workload acutely increased rates of glucose uptake beyond rates of glucose oxidation. The concomitant increase in glucose 6-phosphate (G6P) was associated with mTOR activation, endoplasmic reticulum (ER) stress and impaired contractile function. Both rapamycin and metformin restored glycolytic homeostasis, relieved ER stress and rescued contractile function. G6P and ER stress were also downregulated with mechanical unloading of failing human hearts. Taken together, the data support the hypothesis that metabolic remodeling precedes, triggers, and sustains structural remodeling of the heart and implicate a critical role for G6P in load-induced contractile dysfunction, mTOR activation and ER stress. In general terms, the intermediary metabolism of energy providing substrates provides signals for the onset and progression of hypertrophy and heart failure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The degradation of proteins by the ubiquitin proteasome system is essential for cellular homeostasis in the heart. An important regulator of metabolic homeostasis is AMP-activated protein kinase (AMPK). During nutrient deprivation, AMPK is activated and intracellular proteolysis is enhanced through the ubiquitin proteasome system (UPS). Whether AMPK plays a role in protein degradation through the UPS in the heart is not known. Here I present data in support of the hypothesis that AMPK transcriptionally regulates key players in the UPS, which, under extreme conditions can be detrimental to the heart. The ubiquitin ligases MAFbx /Atrogin-1 and MuRF1, key regulators of protein degradation, and AMPK activity are increased during nutrient deprivation. Pharmacologic and genetic activation of AMPK is sufficient for the induction of MAFbx/Atrogin-1 and MuRF1 in cardiomyocytes and in the heart in vivo. Comprehensive experiments demonstrate that the molecular mechanism by which AMPK regulates MuRF1 expression is through the transcription factor myocyte enhancer factor 2 (MEF2), which is involved in stress response and cardiomyocyte remodeling. MuRF1 is required for AMPK-mediated protein degradation through the UPS in cardiomyocytes. Consequently, the absence of MuRF1 during chronic fasting preserves cardiac function, possibly by limiting degradation of critical metabolic enzymes. Furthermore, during cardiac hypertrophy, chronic activation of AMPK also leads to cardiac dysfunction, possibly through enhanced protein degradation and metabolic dysregulation. Collectively, my findings demonstrate that AMPK regulates expression of ubiquitin ligases which are required for UPS-mediated protein degradation in the heart. Based on these results, I propose that specific metabolic signals may serve as modulators of intracellular protein degradation in the heart.