22 resultados para Cellular and molecular analyses


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuromodulation is essential to many functions of the nervous system. In the simple gastropod mollusk Aplysia californica, neuromodulation of the circuits for the defensive withdrawal reflexes has been associated with several forms of learning. In the present work, the neurotransmitters and neural circuitry which contribute to the modulation of the tail-siphon withdrawal reflex were examined.^ A recently-identified neuropeptide transmitter, buccalin A was found to modulate the biophysical properties of the sensory neurons that mediate the reflex. The actions of buccalin A on the sensory neurons were compared with those of the well-characterized modulatory transmitter serotonin, and convergence and divergence in the actions of these two transmitters were evaluated. Buccalin A dramatically increased the excitability of sensory neurons and occluded further enhancement of excitability by serotonin. Buccalin A produced no significant change in spike duration, and it did not block serotonin-induced spike broadening. Voltage-clamp analysis revealed the currents that may be involved in the effects on spike duration and excitability. Buccalin A decreased an outward current similar to the S-K$\sp+$ current (I$\sb{\rm K,S}$). Buccalin A appeared to occlude further modulation of I$\sb{\rm K,S}$ by serotonin, but did not block serotonin-induced modulation of the voltage-dependent delayed rectifier K$\sp+$ current (I$\sb{\rm K,V}$). These results suggest that buccalin A converges on some, but not all, of the same subcellular modulatory pathways as serotonin.^ In order to begin to understand neuromodulation in a more physiological context for the tail-siphon withdrawal reflex, the modulatory circuitry for the tail-withdrawal circuit was examined. Mechanoafferent neurons in the J cluster of the cerebral ganglion were identified as elements of a modulatory circuit for the reflex. Excitatory and inhibitory connections were observed between the J cells and the pleural sensory neurons, the tail motor neurons, and several classes of interneurons for the tail-siphon withdrawal circuit. The J cells produced both fast and slow PSPs in these neurons. Of particular interest was the ability of the J cells to produce slow EPSPs in the pleural sensory neurons. These slow EPSPs were associated with an increase in the excitability of the sensory neurons. The J cells appear to mediate both sensory and modulatory inputs to the circuit for the tail-siphon withdrawal reflex from the anterior part of the animal. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Female inmates make up the fastest growing segment in our criminal justice system today. The rapidly increasing trend for female prisoners calls for enhanced efforts to strategically plan the correctional facilities that address the needs of this growing population, and to work with communities to prevent crime in women. The incarcerated women in the U.S. have an estimated 145,000 minor children who are predisposed to unique psychosocial problems as a result of parental incarceration.^ This study examined the patterns of care and outcomes for pregnant inmates and their infants in Texas state prisons between 1994 and 1996. The study population consists of 202 pregnant inmates who delivered in a 2-year period, and a randomly sampled comparison cohort of 804 women from general Texas population, matched on race and educational levels. Both quantitative and qualitative data were used to elucidate the inmates' risk-factor profile, delivery/birth outcomes, and the patterns of care during pregnancy. The continuity-of-care issues for this population were also explored.^ Epidemiologic data were derived from multiple record systems to establish the comparison between two cohorts. A significantly great proportion of the inmates have prior lifestyle risk-factors (smoking, alcohol, and illicit drug abuse), poorer health status, and worse medical history. However, most of these existing risk-factors seem to show little manifestation in their current pregnancy. On the basis of maternal labor/delivery outcome and a number of neonatal indicators, this study found some evidence of a better pregnancy outcome for the inmate cohort when compared to the comparison group. Some possible explanations of this paradox were discussed. Seventeen percent of inmates gave birth to infants with suspected congenital syphilis. The placement patterns for the infants' care immediately after birth were elucidated.^ In addition to the quantitative data, an ethnographic approach was used to collect qualitative data from a subset of the inmate cohort (n = 20) and 12 care providers. The qualitative data were analyzed for their contents and themes, giving rise to a detailed description of the inmates' pregnancy experience. Eleven themes emerged from the study's thematic analysis, which provides the context for interpreting the epidemiologic data.^ Meaningful findings in this study were presented in a three-dimensional matrix to shed light on the apparent relationship between outcome indicators and their potential determinants. The suspected "linkages" between the outcome and their determinants can be used to generate hypotheses for future studies. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An important goal in the study of long-term memory is to understand the signals that induce and maintain the underlying neural alterations. In Aplysia, long-term sensitization of defensive reflexes has been examined in depth as a simple model of memory. Extensive studies of sensory neurons (SNs) in Aplysia have led to a cellular and molecular model of long-term memory that has greatly influenced memory research. According to this model, induction of long-term memory in Aplysia depends upon serotonin (5-HT) release and subsequent activation of the cAMP-PKA pathway in SNs. The evidence supporting this model mainly came from studies of long-term synaptic facilitation (LTF) using dissociated (and therefore axotomized) cells growing in culture. However, studies in more intact preparations have produced complex and discrepant results. Because these SNs function as nociceptors, and display similar alterations (long-term hyperexcitability [LTH], LTF, and growth) in models of memory and nerve injury, this study examined the roles of 5-HT and the cAMP-PKA pathway in the induction and expression of long-term, injury-related LTH and LTF in Aplysia SNs. ^ The results presented here suggest that 5-HT is not a primary signal for inducing LTH (and perhaps LTF) in Aplysia SNs. Prolonged treatment with 5-HT failed to induce LTH of Aplysia SNs in either ganglia or dissociated-cell preparations. Treatment with a 5-HT antagonist, methiothepin, during noxious nerve stimulation failed to reduce 24 hr LTH. Furthermore, while 5-HT can induce LTF of SN synapses, this LTF appears to be an indirect effect of 5-HT on other cells. When neural activity was suppressed by elevating divalent cations or by using tetrodotoxin (TTX), 5-HT failed to induce LTF. Unlike LTF, LTH of the SNs could not be produced, even when 5-HT treatment occurred in normal artificial sea water (ASW), suggesting that LTH and LTF are likely to depend on different signals for induction. However, methiothepin reduced the later expression of LTH induced by nerve stimulation, suggesting that 5-HT contributes to the maintenance of LTH in Aplysia SNs.n of somata from the ganglion (which axotomizes SNs) or crushing peripheral n. ^ In summary, this study found that 5-HT and the cAMP-PKA pathway are not involved in the induction of long-term, injury-related LTH of Aplysia SNs, but persistent release of 5-HT and persistent PKA activity contribute to the maintenance of LTH induced by injury. (Abstract shortened by UMI.)^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human pigmentation is a complex trait with the observed variation caused by the varied production of eumelanin (brown/black melanins) and phaeomelanin (red/yellow melanins) by the melanocytes. The melanocortin 1 receptor (MC1R), a G protein-coupled receptor expressed in the melanocytes, is a regulator eu- and phaeomelanin synthesis, and MC1R mutations causing skin and coat color changes are known in many mammals. To understand the role of MC1R in human pigmentation variation, I have sequenced the MC1R gene in 121 individuals sampled from world populations. In addition, I have sequenced the MC1R gene in common and pygmy chimpanzees, gorilla, orangutan, and baboon to study the evolution of MC1R and to infer the ancestral human MC1R sequence. The ancestral MC1R sequence is observed in all 25 African individuals studied, but at lower frequencies in the other populations examined, especially in East and Southeast Asians. The Arg163Gln variant is absent in the Africans studied, almost absent in Europeans, and at a low frequency in Indians, but is at an exceptionally high frequency (70%) in East and Southeast Asians. To further evaluate the role of MC1R variants in human pigmentation variation, I have combined these molecular evolution and population studies with functional assays on MC1R variants and primate MC1Rs. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prostate cancer remains the second leading cause of male cancer deaths in the United States, yet the molecular mechanisms underlying this disease remain largely unknown. Cytogenetic and molecular analyses of prostate tumors suggest a consistent association with the loss of chromosome 10. Previously, we have defined a novel tumor suppressor locus PAC-1 within chromosome 10pter-q11. Introduction of the short arm of chromosome 10 into a prostatic adenocarcinoma cell line PC-3H resulted in dramatic tumor suppression and restoration of a programmed cell death pathway. Using a combined approach of comparative genomic hybridization and microsatellite analysis of PC-3H, I have identified a region of hemizygosity within 10p12-p15. This region has been shown to be involved in frequent loss of heterozygosity in gliomas and melanoma. To functionally dissect the region within chromosome 10p containing PAC-1, we developed a strategy of serial microcell fusion, a technique that allows the transfer of defined fragments of chromosome 10p into PC-3H. Serial microcell fusion was used to transfer defined 10p fragments into a mouse A9 fibrosarcoma cell line. Once characterized by FISH and microsatellite analyses, the 10p fragments were subsequently transferred into PC-3H to generate a panel of microcell hybrid clones containing overlapping deletions of chromosome 10p. In vivo and microsatellite analyses of these PC hybrids identified a small chromosome 10p fragment (an estimated 31 Mb in size inclusive of the centromere) that when transferred into the PC-3H background, resulted in significant tumor suppression and limited a region of functional tumor suppressor activity to chromosome 10p12.31-q11. This region coincides with a region of LOH demonstrated in prostate cancer. These studies demonstrate the utility of this approach as a powerful tool to limit regions of functional tumor suppressor activity. Furthermore, these data used in conjunction with data generated by the Human Genome Project lent a focused approach to identify candidate tumor suppressor genes involved in prostate cancer. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During vertebrate embryogenesis, cells from the paraxial mesoderm coalesce in a rostral-to-caudal progression to form the somites. Subsequent compartmentalization of the somites yields the sclerotome, myotome and dermatome, which give rise to the axial skeleton, axial musculature, and dermis, respectively. Recently, we cloned a novel basic-Helix-Loop-Helix (bHLH) protein, called scleraxis, which is expressed in the sclerotome, in mesenchymal precursors of bone and cartilage, and in connective tissues. This dissertation focuses on the cloning, expression and functional analysis of a bHLH protein termed paraxis, which is nearly identical to scleraxis within the bHLH region but diverges in both its amino and carboxyl termini. During the process of mouse embryogenesis, paraxis transcripts are first detected at about day 7.5 post coitum within the primitive mesoderm lying posterior to the head and heart primordia. Subsequently, paraxis expression progresses caudally through the paraxial mesoderm, immediately preceding somite formation. Paraxis is expressed at high levels in newly formed somites before the first detectable expression of the myogenic bHLH genes, and as the somite becomes compartmentalized, paraxis becomes downregulated within the myotome.^ To determine the function of paraxis during mammalian embryogenesis, mice were generated with a null mutation in the paraxis locus. Paraxis null mice survived until birth, but exhibited severe foreshortening along the anteroposterior axis due to the absence of vertebrae caudal to the midthoracic region. The phenotype also included axial skeletal defects, particularly shortened bifurcated ribs which were detached from the vertebral column, fused vertebrae and extensive truncation and disorganization caudal to the hindlimbs. Mutant neonates also lacked normal levels of trunk muscle and exhibited defects in the dermis as well as the stratification of the epidermis. Analysis of paraxis -/- mutant embryos has revealed a failure of the somites to both properly epithelialize and compartmentalize, resulting in defects in somite-derived cell lineages. These results suggest that paraxis is an essential component of the genetic pathway regulating somitogenesis. ^