67 resultados para Cancer - Genetic aspects


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Introduction. Distant metastasis remains the leading cause of death among prostate cancer patients. Several genetic susceptibility loci associated with Prostate cancer have been identified by the Genome Wide Association Studies (GWAS). To date, few studies have explored the ability of these SNPs to identify metastatic prostate cancer. Based on the identification of genetic variants as predictors of aggressive disease, a case comparison study of prostate cancer patients was designed to explore the association of 96 GWAS single nucleotide polymorphisms (SNPs) with metastatic disease. ^ Method. 1242 histologically confirmed prostate cancer patients, with and without metastatic disease, were enrolled into the study. Data were collected from personal interviews, hospital database and abstraction of medical records. Ninety six SNPs identified from GWAS studies based on their associations with prostate cancer risk were genotyped in the study population. Univariate and multivariate logistic regression analyses were used to explore the relationships of the variants with metastatic prostate cancer in Whites and African American men. ^ Results. Four SNPs showed independent associations with metastatic prostate cancer (rs721048 in EHBP1 (2p15), rs3025039 in VEGF (6p12), rs11228565 in Intergenic(11q13.2) and rs2735839 in KLK3(19q13.33)) in the White population. For SNP rs2735839 in KLK3, genotype GA was 1.71 times as likely to be associated with metastatic prostate cancer diagnosis as genotype AA after adjusting for other significant SNPs and covariates (95% CI, 1.12-2.60; p=0.012). In men of African descent, three SNPs: rs1512268 in NKX3-1(8p21.2), rs12155172 in intergenic (7p15.3) & rs10486567 in JAZF1 (7p15.2) were positively associated with metastatic disease in the multivariate analysis. The strongest SNP was rs1512268 heterozygous genotype AG in NKX3-1(8p21.2) which was associated with 3.97-fold increased risk of metastatic prostate cancer diagnosis (95% CI, 1.69-9.34; p =0.002). ^ Conclusion. Genetic variants associated with metastatic prostate cancer were different in Whites and African American men. Given the high mortality rate recorded in men diagnosed with metastatic prostate tumor, further studies are needed to validate associations and establish their clinical application.^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Complex diseases, such as cancer, are caused by various genetic and environmental factors, and their interactions. Joint analysis of these factors and their interactions would increase the power to detect risk factors but is statistically. Bayesian generalized linear models using student-t prior distributions on coefficients, is a novel method to simultaneously analyze genetic factors, environmental factors, and interactions. I performed simulation studies using three different disease models and demonstrated that the variable selection performance of Bayesian generalized linear models is comparable to that of Bayesian stochastic search variable selection, an improved method for variable selection when compared to standard methods. I further evaluated the variable selection performance of Bayesian generalized linear models using different numbers of candidate covariates and different sample sizes, and provided a guideline for required sample size to achieve a high power of variable selection using Bayesian generalize linear models, considering different scales of number of candidate covariates. ^ Polymorphisms in folate metabolism genes and nutritional factors have been previously associated with lung cancer risk. In this study, I simultaneously analyzed 115 tag SNPs in folate metabolism genes, 14 nutritional factors, and all possible genetic-nutritional interactions from 1239 lung cancer cases and 1692 controls using Bayesian generalized linear models stratified by never, former, and current smoking status. SNPs in MTRR were significantly associated with lung cancer risk across never, former, and current smokers. In never smokers, three SNPs in TYMS and three gene-nutrient interactions, including an interaction between SHMT1 and vitamin B12, an interaction between MTRR and total fat intake, and an interaction between MTR and alcohol use, were also identified as associated with lung cancer risk. These lung cancer risk factors are worthy of further investigation.^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The genetic factors that influence bladder cancer clinical outcomes are largely unknown. In this clinical outcomes study, I assessed genetic variations in the Wnt/β-catenin stem-cell pathway genes for association with recurrence and progression. A total of 230 SNPS in 40 genes from the Wnt/β-catenin pathway were genotyped in 419 histologically confirmed non-muscle invasive bladder cancer cases. Several significant associations were observed in the clinical outcomes analysis. Under the dominant model WNT8B: rs4919464 (HR: 1.55, 95% CI: 1.17-2.06, P=2.2x10-3) and WNT8B: rs3793771 (HR: 1.54, 95% CI: 1.09-1.62, P=4.6x10-3 ) were statistically significantly associated with an increase risk of recurrence while two other variants, APC2: rs11668593 (HR: 2.50, 95% CI: 1.43-4.35, P=1.2x10-3) and LRP5 : rs312778 (HR: 1.81, 95% CI: 1.23-2.65, P=2.7x10-3), were significantly associated with recurrence risk under the recessive model of inheritance. Four SNPs in the recessive model were associated with an increased risk of progression (AXIN2: rs1544427, LRP5: rs312778, AXIN1: rs370681, AXIN1: rs2301522). LRP5: rs312778 had the most significant increased risk of progression with a 2.68 (95% CI: 1.52-4.72, P=6.4x10-4)-fold increased risk. Stratification analysis based on treatment regimen (transurethral resection (TUR) and Bacillus Calmette-Guérin (BCG)) was also performed. Individuals with at least one variant in AXIN2: rs2007085 were found to have a 2.09 (95% CI: 1.24-3.52, P=5.4x10-3) -fold increased risk of recurrence in those that received TUR only, and no statistically significant effect was seen in those that received BCG. Individuals who received TUR with at least one variant in LEF1: rs10516550 were found to have a 2.26 (95% CI: 1.22-4.18, P=9.7x10-3)-fold increase risk of recurrence and no statistically significant effect was found in individuals who received BCG. Also, the recessive model of LRP6: rs2302684 in TUR only treatment was shown to have a 1.95 (95%CI: 1.18-3.21, P=8.8x10 -3)-fold increased risk of recurrence, and a suggested protective effect associated with a (HR: 0.83, 95% CI: 0.51-1.37, P=0.468) decreased risk of recurrence. Together, these findings implicate the Wnt/β-catenin stem-cell pathway as playing a role in bladder cancer clinical outcomes and have important implications for personalization of future treatment regimens. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pancreatic cancer is the 4th most common cause for cancer death in the United States, accompanied by less than 5% five-year survival rate based on current treatments, particularly because it is usually detected at a late stage. Identifying a high-risk population to launch an effective preventive strategy and intervention to control this highly lethal disease is desperately needed. The genetic etiology of pancreatic cancer has not been well profiled. We hypothesized that unidentified genetic variants by previous genome-wide association study (GWAS) for pancreatic cancer, due to stringent statistical threshold or missing interaction analysis, may be unveiled using alternative approaches. To achieve this aim, we explored genetic susceptibility to pancreatic cancer in terms of marginal associations of pathway and genes, as well as their interactions with risk factors. We conducted pathway- and gene-based analysis using GWAS data from 3141 pancreatic cancer patients and 3367 controls with European ancestry. Using the gene set ridge regression in association studies (GRASS) method, we analyzed 197 pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Using the logistic kernel machine (LKM) test, we analyzed 17906 genes defined by University of California Santa Cruz (UCSC) database. Using the likelihood ratio test (LRT) in a logistic regression model, we analyzed 177 pathways and 17906 genes for interactions with risk factors in 2028 pancreatic cancer patients and 2109 controls with European ancestry. After adjusting for multiple comparisons, six pathways were marginally associated with risk of pancreatic cancer ( P < 0.00025): Fc epsilon RI signaling, maturity onset diabetes of the young, neuroactive ligand-receptor interaction, long-term depression (Ps < 0.0002), and the olfactory transduction and vascular smooth muscle contraction pathways (P = 0.0002; Nine genes were marginally associated with pancreatic cancer risk (P < 2.62 × 10−5), including five reported genes (ABO, HNF1A, CLPTM1L, SHH and MYC), as well as four novel genes (OR13C4, OR 13C3, KCNA6 and HNF4 G); three pathways significantly interacted with risk factors on modifying the risk of pancreatic cancer (P < 2.82 × 10−4): chemokine signaling pathway with obesity ( P < 1.43 × 10−4), calcium signaling pathway (P < 2.27 × 10−4) and MAPK signaling pathway with diabetes (P < 2.77 × 10−4). However, none of the 17906 genes tested for interactions survived the multiple comparisons corrections. In summary, our current GWAS study unveiled unidentified genetic susceptibility to pancreatic cancer using alternative methods. These novel findings provide new perspectives on genetic susceptibility to and molecular mechanisms of pancreatic cancer, once confirmed, will shed promising light on the prevention and treatment of this disease. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prostate cancer is the second leading cause of cancer-related death and the most common non-skin cancer in men in the USA. Considerable advancements in the practice of medicine have allowed a significant improvement in the diagnosis and treatment of this disease and, in recent years, both incidence and mortality rates have been slightly declining. However, it is still estimated that 1 man in 6 will be diagnosed with prostate cancer during his lifetime, and 1 man in 35 will die of the disease. In order to identify novel strategies and effective therapeutic approaches in the fight against prostate cancer, it is imperative to improve our understanding of its complex biology since many aspects of prostate cancer initiation and progression still remain elusive. The study of tumor biomarkers, due to their specific altered expression in tumor versus normal tissue, is a valid tool for elucidating key aspects of cancer biology, and may provide important insights into the molecular mechanisms underlining the tumorigenesis process of prostate cancer. PCA3, is considered the most specific prostate cancer biomarker, however its biological role, until now, remained unknown. PCA3 is a long non-coding RNA (ncRNA) expressed from chromosome 9q21 and its study led us to the discovery of a novel human gene, PC-TSGC, transcribed from the opposite strand and in an antisense orientation to PCA3. With the work presented in this thesis, we demonstrate that PCA3 exerts a negative regulatory role over PC-TSGC, and we propose PC-TSGC to be a new tumor suppressor gene that contrasts the transformation of prostate cells by inhibiting Rho-GTPases signaling pathways. Our findings provide a biological role for PCA3 in prostate cancer and suggest a new mechanism of tumor suppressor gene inactivation mediated by non-coding RNA. Also, the characterization of PCA3 and PC-TSGC led us to propose a new molecular pathway involving both genes in the transformation process of the prostate, thus providing a new piece of the jigsaw puzzle representing the complex biology of prostate cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Li-Fraumeni Syndrome (LFS) is a hereditary cancer syndrome which predisposes individuals to cancer beginning in childhood. These risks are spread across a lifetime, from early childhood to adulthood. Mutations in the p53 tumor suppressor gene are known to cause the majority of cases of LFS. The risk for early onset cancer in individuals with Li-Fraumeni Syndrome is high. Studies have shown that individuals with LFS have a 90% lifetime cancer risk. Children under 18 have up to a 15% chance of cancer development. Effectiveness of cancer screening and management in individuals with Li-Fraumeni Syndrome is unclear. Screening for LFS-associated cancers has not been shown to reduce mortality. Due to the lack of effective screening techniques for childhood cancers, institutions vary with regard to their policies on testing children for LFS. There are currently no national guidelines regarding predictive testing of children who are at risk of inheriting LFS. No studies have looked at parental attitudes towards predictive p53 genetic testing in their children. This was a cross-sectional pilot study aimed at describing these attitudes. We identified individuals whose children were at risk for inheriting p53 genetic mutations. These individuals were provided with surveys which included validated measures addressing attitudes and beliefs towards genetic testing. The questionnaire included qualitative and quantitative measures. Six individuals completed and returned the questionnaire with a response rate of 28.57%. In general, respondents agreed that parents should have the opportunity to obtain p53 genetic testing for their child. Parents vary in regard to their attitudes towards who should be involved in the decision making process and at what time and under what considerations testing should occur. Testing motivations cited most important by respondents included family history, planning for the future and health management. Concern for insurance genetic discrimination was cited as the most important “con” to genetic testing. Although limited by a poor response rate, this study can give health care practitioners insight into testing attitudes and beliefs of families considering pediatric genetic testing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While modern treatments have led to a dramatic improvement in survival for pediatric malignancy, toxicities are high and a significant proportion of patients remain resistant. Gene transfer offers the prospect of highly specific therapies for childhood cancer. "Corrective" genes may be transferred to overcome the genetic abnormalities present in the precancerous cell. Alternatively, genes can be introduced to render the malignant cell sensitive to therapeutic drugs. The tumor can also be attacked by decreasing its blood supply with genes that inhibit vascular growth. Another possible approach is to modify normal tissues with genes that make them more resistant to conventional drugs and/or radiation, thereby increasing the therapeutic index. Finally, it may be possible to attack the tumor indirectly by using genes that modify the behavior of the immune system, either by making the tumor more immunogenic, or by rendering host effector cells more efficient. Several gene therapy applications have already been reported for pediatric cancer patients in preliminary Phase 1 studies. Although no major clinical success has yet been achieved, improvements in gene delivery technologies and a better understanding of mechanisms of tumor progression and immune escape have opened new perspectives for the cure of pediatric cancer by combining gene therapy with standard therapeutic available treatments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Methylating agents are involved in carcinogenesis, and the DNA repair protein O(6)-methylguanine-DNA methyltransferase (MGMT) removes methyl group from O(6)-methylguanine. Genetic variation in DNA repair genes has been shown to contribute to susceptibility to squamous cell carcinoma of the head and neck (SCCHN). We hypothesize that MGMT polymorphisms are associated with risk of SCCHN. In a hospital-based case-control study of 721 patients with SCCHN and 1234 cancer-free controls frequency-matched by age, sex and ethnicity, we genotyped four MGMT polymorphisms, two in exon 3, 16195C>T and 16286C>T and two in the promoter region, 45996G>T and 46346C>A. We found that none of these polymorphisms alone had a significant effect on risk of SCCHN. However, when these four polymorphisms were evaluated together by the number of putative risk genotypes (i.e. 16195CC, 16286CC, 45996GT+TT, and 46346CA+AA), a statistically significantly increased risk of SCCHN was associated with the combined genotypes with three to four risk genotypes, compared with those with zero to two risk genotypes (adjusted odds ratio (OR)=1.27; 95% confidence interval (CI)=1.05-1.53). This increased risk was also more pronounced among young subjects (OR=1.81; 95% CI=1.11-2.96), men (OR=1.24; 95% CI=1.00-1.55), ever smokers (OR=1.25; 95%=1.01-1.56), ever drinkers (OR=1.29; 95% CI=1.04-1.60), patients with oropharyngeal cancer (OR=1.45; 95% CI=1.12-1.87), and oropharyngeal cancer with regional lymph node metastasis (OR=1.52; 95% CI=1.16-1.89). In conclusion, our results suggest that any one of MGMT variants may not have a substantial effect on SCCHN risk, but a joint effect of several MGMT variants may contribute to risk and progression of SCCHN, particularly for oropharyngeal cancer, in non-Hispanic whites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Early detection of colorectal cancer through timely follow-up of positive Fecal Occult Blood Tests (FOBTs) remains a challenge. In our previous work, we found 40% of positive FOBT results eligible for colonoscopy had no documented response by a treating clinician at two weeks despite procedures for electronic result notification. We determined if technical and/or workflow-related aspects of automated communication in the electronic health record could lead to the lack of response. METHODS: Using both qualitative and quantitative methods, we evaluated positive FOBT communication in the electronic health record of a large, urban facility between May 2008 and March 2009. We identified the source of test result communication breakdown, and developed an intervention to fix the problem. Explicit medical record reviews measured timely follow-up (defined as response within 30 days of positive FOBT) pre- and post-intervention. RESULTS: Data from 11 interviews and tracking information from 490 FOBT alerts revealed that the software intended to alert primary care practitioners (PCPs) of positive FOBT results was not configured correctly and over a third of positive FOBTs were not transmitted to PCPs. Upon correction of the technical problem, lack of timely follow-up decreased immediately from 29.9% to 5.4% (p<0.01) and was sustained at month 4 following the intervention. CONCLUSION: Electronic communication of positive FOBT results should be monitored to avoid limiting colorectal cancer screening benefits. Robust quality assurance and oversight systems are needed to achieve this. Our methods may be useful for others seeking to improve follow-up of FOBTs in their systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pancreatic cancer is one of the most lethal type of cancer due to its high metastasis rate and resistance to chemotherapy. Pancreatic fibrosis is a constant pathological feature of chronic pancreatitis and the hyperactive stroma associated with pancreatic cancer. Strong evidence supports an important role of cyclooxygenase-2 (COX-2) and COX-2 generated prostaglandin E2 (PGE2) during pancreatic fibrosis. Pancreatic stellate cells (PSC) are the predominant source of extracellular matrix production (ECM), thus being the key players in both diseases. Given this background, the primary objective is to delineate the role of PGE2 on human pancreatic stellate cells (PSC) hyper activation associated with pancreatic cancer. This study showed that human PSC cells express COX-2 and synthesize high levels of PGE2. PGE2 stimulated PSC migration and invasion; expression of extra cellular matrix (ECM) genes and tissue degrading matrix metallo proteinases (MMP) genes. I further identified the PGE2 EP receptor responsible for mediating these effects on PSC. Using genetic and pharmacological approaches I identified the receptor required for PGE2 mediates PSC hyper activation. Treating PSC with Specific antagonists against EP1, EP2 and EP4, demonstrated that blocking EP4 receptor only, resulted in a complete reduction of PGE2 mediated PSC activation. Furthermore, siRNA mediated silencing of EP4, but not other EP receptors, blocked the effects of PGE2 on PSC fibrogenic activity. Further examination of the downstream pathway modulators revealed that PGE2 stimulation of PSC involved CREB and not AKT pathway. The regulation of PSC by PGE2 was further investigated at the molecular level, with a focus on COL1A1. Collagen I deposition by PSC is one of the most important events in pancreatic cancer. I found that PGE2 regulates PSC through activation of COL1A1 expression and transcriptional activity. Downstream of PGE2, silencing of EP4 receptor caused a complete reduction of COL1A1 expression and activity supporting the role of EP4 mediated stimulation of PSC. Taken together, this data indicate that PGE2 regulates PSC via EP4 and suggest that EP4 can be a better therapeutic target for pancreatic cancer to reduce the extensive stromal reaction, possibly in combination with chemotherapeutic drugs can further kill pancreatic cancer cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ataxia telangiectasia mutated (ATM) is a critical component of the cellular response to DNA damage, where it acts as a damage sensor, and signals to a large network of proteins which execute the important tasks involved in responding to the damage, namely inducing cell cycle checkpoints, inducing DNA repair, modulating transcriptional responses, and regulating cell death pathways if the damage cannot be repaired faithfully. We have now discovered that an additional novel component of this ATM-dependent damage response involves induction of autophagy in response to oxidative stress. In contrast to DNA damage-induced ATM activation however, oxidative stress induced ATM, occurs in the cytoplasm, and does not require nuclear-to-cytoplasmic shuttling of ATM. Using several cell culture systems including MCF7 breast carcinoma cells, SKOV3 ovarian cancer cells, and various lineages of mouse embryonic fibroblasts, we showed that once activated by reactive oxygen species (ROS), ATM signals to mTORC1 to induce autophagy via the LKB1-AMPK-TSC2 pathway. Targeting dysregulation of mTORC1 in Atm-deficient mice, which succumb to lymphomagenesis within 3-4 months of age with daily administration of rapamycin, could significantly extend survival and cause regression of tumors, suggesting that pharmacologically targeting this pathway has therapeutic implications in cancer. We also identified a second contrasting pathway for DNA damage-induced mTORC1 repression which does not require AMPK activation, but does require ATM and TSC2. Several potential mechanisms including mTOR localization and p53-mediated pathways were ruled out however we identified that TSC2 may be an additional cytoplasmic direct ATM substrate that is engaged in response to DNA damage specifically. Lastly, a study was performed to examine whether autophagy induced by ovarian cancer therapeutics (focusing on cisplatin, since paclitaxel does not induce autophagy in the SKOV3 cell line model we used) plays a role in resistance to therapy since autophagy can play both pro-survival mechanisms or be a mechanism of cell death. Using a genetic approach to knock-down Atg5 expression with shRNA in SKOV3 ovarian carcinoma cells, we compared the cytotoxicity of cisplatin in vector or Atg5 knock-down cells, and demonstrated that autophagy does not play any significant role in the response to cisplatin in this cell line.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanism of tumorigenesis in the immortalized human pancreatic cell lines: cell culture models of human pancreatic cancer Pancreatic ductal adenocarcinoma (PDAC) is the most lethal cancer in the world. The most common genetic lesions identified in PDAC include activation of K-ras (90%) and Her2 (70%), loss of p16 (95%) and p14 (40%), inactivation p53 (50-75%) and Smad4 (55%). However, the role of these signature gene alterations in PDAC is still not well understood, especially, how these genetic lesions individually or in combination contribute mechanistically to human pancreatic oncogenesis is still elusive. Moreover, a cell culture transformation model with sequential accumulation of signature genetic alterations in human pancreatic ductal cells that resembles the multiple-step human pancreatic carcinogenesis is still not established. In the present study, through the stepwise introduction of the signature genetic alterations in PDAC into the HPV16-E6E7 immortalized human pancreatic duct epithelial (HPDE) cell line and the hTERT immortalized human pancreatic ductal HPNE cell line, we developed the novel experimental cell culture transformation models with the most frequent gene alterations in PDAC and further dissected the molecular mechanism of transformation. We demonstrated that the combination of activation of K-ras and Her2, inactivation of p16/p14 and Smad4, or K-ras mutation plus p16 inactivation, was sufficient for the tumorigenic transformation of HPDE or HPNE cells respectively. We found that these transformed cells exhibited enhanced cell proliferation, anchorage-independent growth in soft agar, and grew tumors with PDAC histopathological features in orthotopic mouse model. Molecular analysis showed that the activation of K-ras and Her2 downstream effector pathways –MAPK, RalA, FAK, together with upregulation of cyclins and c-myc were involved in the malignant transformation. We discovered that MDM2, BMP7 and Bmi-1 were overexpressed in the tumorigenic HPDE cells, and that Smad4 played important roles in regulation of BMP7 and Bmi-1 gene expression and the tumorigenic transformation of HPDE cells. IPA signaling pathway analysis of microarray data revealed that abnormal signaling pathways are involved in transformation. This study is the first complete transformation model of human pancreatic ductal cells with the most common gene alterations in PDAC. Altogether, these novel transformation models more closely recapitulate the human pancreatic carcinogenesis from the cell origin, gene lesion, and activation of specific signaling pathway and histopathological features.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pedigree analysis of certain families with a high incidence of tumors suggests a genetic predisposition to cancer. Li and Fraumeni described a familial cancer syndrome that is characterized by multiple primary tumors, early age of onset, and marked variation in tumor type. Williams and Strong (1) demonstrated that at least 7% of childhood soft tissue sarcoma patients had family histories that is readily explained by a highly penetrant autosomal dominant gene. To characterize the mechanism for genetic predisposition to many tumor types in these families, we have studied genetic alterations in fibroblasts, a target tissue from patients with the Li-Fraumeni Syndrome (LFS).^ We have observed spontaneous changes in initially normal dermal fibroblasts from LFS patients as they are cultured in vitro. The cells acquire an altered morphology, chromosomal anomalies, and anchorage-independent growth. This aberrant behavior of fibroblasts from LFS patients had never been observed in fibroblasts from normal donors. In addition to these phenotypic alterations, patient fibroblasts spontaneously immortalize by 50 population doublings (pd) in culture; unlike controls that remain normal and senesce by 30-35 (2). At 50 pd, immortal fibroblasts from two patients were found to be susceptible to tumorigenic transformation by an activated T24 H-ras oncogene (3). Approximately 80% of the oncogene expressing transfectants were capable of forming tumors in nude mice within 2-3 weeks. p53 has been previously associated with immortalization of cells in culture and cooperation with ras in transfection assays. Therefore, patients' fibroblast and lymphocyte derived DNA was tested for point mutations in p53. It was shown that LFS patients inherited certain point mutations in one of the two p53 alleles (4). Further studies on the above LFS immortal fibroblasts have demonstrated loss of the remaining p53 allele concomitant with escape from senescence. While the loss of the second allele correlates with immortalization it is not sufficient to transformation by an activated H-ras or N-ras oncogene. These immortal fibroblasts are resistant to tumorigenic transformation by v-abl, v-src, c-neu or v-mos oncogene; implying that additional steps are required in the tumorigenic progression of LFS patients' fibroblasts.^ References. (1) Williams et al., J. Natl. Cancer Inst. 79:1213, 1987. (2) Bischoff et al., Cancer Res. 50:7979, 1990. (3) Bischoff et al., Oncogene 6:183, 1991. (4) Malkin et al., Science 250:1233, 1990. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tumor specific immunity is mediated by cytotoxic T lymphocytes (CTL) that recognize peptide antigen (Ag) in the context of major histocompatibility complex (MHC) class I molecules and by helper T (Th) lymphocytes that recognize peptide Ag in the context of MHC class II molecules. The purpose of this study is (1) to induce or augment the immunogenicity of nonimmunogenic or weakly immunogenic tumors by genetic modification of tumor cells, and (2) to use these genetically altered cells in cancer immunotherapy. To study this, I transfected a highly tumorigenic murine melanoma cell line (K1735) that did not express constitutively either MHC class I or II molecules with syngeneic cloned MHC class I and/or class II genes, and then determined the tumorigenicity of transfected cells in normal C3H mice. K1735 transfectants expressing either $\rm K\sp{k}$ or $\rm A\sp{k}$ molecules alone produced tumors in normal C3H mice, whereas most transfectants that expressed both molecules were rejected in normal C3H mice but produced tumors in nude mice. The rejection of K1735 transfectants expressing $\rm K\sp{k}$ and $\rm A\sp{k}$ Ag in normal C3H mice required both $\rm CD4\sp+$ and $\rm CD8\sp+$ T cells. Interestingly, the $\rm A\sp{k}$ requirement can be substituted by IL-2 because transfection of $\rm K\sp{k}$-positive/A$\sp{\rm k}$-negative K1735 cells with the IL-2 gene also resulted in abrogation of tumorigenicity in normal C3H mice but not in nude mice. In addition, 1735 $(\rm I\sp+II\sp+)$ transfected cells can function as antigen presenting cells (APC) since they could process and present native hen egg lysozyme (HEL) to HEL specific T cell hybridomas. Furthermore, the transplantation immunity induced by K1735 transfectants expressing both $\rm K\sp{k}$ and $\rm A\sp{k}$ molecules completely cross-protected mice against challenge with $\rm K\sp{k}$-positive transfectants but weakly protected them against challenge with parental K1735 cells or $\rm A\sp{k}$-positive transfectants. Finally, I demonstrated that MHC $(\rm I\sp+II\sp+)$ or $\rm K\sp{k}$-positive/IL-2-positive cells can function as anti-cancer vaccines since they can abrogate the growth of established tumors and metastasis.^ In summary, my results indicate that expression of either MHC class I or II molecule alone is insufficient to cause the rejection of K1735 melanoma in syngeneic hosts and that both molecules are necessary. In addition, my data suggest that the failure of $\rm K\sp{k}$-positive K1735 cells to induce a primary tumor-rejection response in normal C3H mice may be due to their inability to induce the helper arm of the anti-tumor immune response. Finally, the ability of MHC $(\rm I\sp+II\sp+)$ or $\rm K\sp{k}$-positive/IL-2-positive cells to prevent growth of established tumors or metastasis suggests that these cell lines can serve as potential vaccines for the immunotherapy of cancer. (Abstract shortened by UMI.) ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to determine whether cancer chemotherapy induces detectable mutations in DNA of the human germline and whether minisatellite repeat number changes can be used as a sensitive indicator of genetic damage in human sperm caused by mutagens. We compared the mutation frequencies in sperm of the same cancer patients pre- and post-, pre- and during, or during and post-treatment. Small pool polymerase chain reaction (SP-PCR) (DNA equivalent to approximately 100 sperm) and Southern blotting techniques were used to detect mutations and quantify the frequency of repeat number changes at the minisatellite MS205 locus. One pre- and one post-treatment semen sample was obtained from each Hodgkin's disease patient treated with either: (1) a regimen without alkylating agents, Novantrone, Oncovin, Vinblastine, and Prednisone (NOVP), 4 patients; (2) a regimen containing alkylating agents, Cytoxan, Vinblastine, Procarbazine, and Prednisone (CVPP)/Adriamycin, Bleomycin, DTIC, CCNU, and Prednisone (ABDIC), 2 patients; and (3) a regimen containing alkylating agents, Mechlorethamine, Oncovin, Procarbazine, and Prednisone (MOPP), 1 patient. One pre- and one during treatment semen sample from each of two Hodgkin's disease patients treated with Adriamycin, Bleomycin, Vinblastine, and Dacarbazine (ABVD) were obtained. One during and one post-treatment semen sample from a Hodgkin's disease patient treated with NOVP were also obtained. At least 7900 sperm in each sample were screened for the repeat number changes at the MS205 locus by multi-aliquots of SP-PCR. The mutation frequencies of pre- and post-treatment for the four patients treated with NOVP were 0.22 and 0.18%; 0.24 and 0.16%; 0.35 and 0.28%; and 0.19 and 0.18%. With CVPP/ABDIC, they were 0.22 and 0.23%; and 0.94 and 0.98% for the two patients and with MOPP they were 0.79 and 1.14%. The mutation frequencies of pre- and during treatment with ABVD were 0.09 and 0.07%; and 0.34 and 0.27% for the two patients. The mutation frequencies of during and post-treatment with NOVP for one patient were 0.31 and 0.25%. A statistically significant increase in mutation frequency was only found in the patient treated with MOPP. According to the time of samples collected after or during treatment and the above results, we conclude that there is no effect of NOVP and CVPP/ABDIC regimens on the mutation frequency in spermatogonia. The spermatocytes are not highly sensitive to chemotherapy agents compared to spermatogonia at the minisatellite MS205 locus. MOPP treatment may increase the mutation frequency at the MS205 locus in spermatogonia. ^