110 resultados para Biology, Molecular|Chemistry, Analytical
Resumo:
A means of analyzing protein quaternary structure using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI MS) and chemical crosslinking was evaluated. Proteins of known oligomeric structure, as well as monomeric proteins, were analyzed to evaluate the method. The quaternary structure of proteins of unknown or uncertain structure was investigated using this technique. The stoichiometry of recombinant E. coli carbamoyl phosphate synthetase and recombinant human farnesyl protein transferase were determined to be heterodimers using glutaraldehyde crosslinking, agreeing with the stoichiometry found for the wild type proteins. The stoichiometry of the gamma subunit of E. coli DNA polymerase III holoenzyme was determined in solution without the presence of other subunits to be a homotetramer using glutaraldehyde crosslinking and MALDI MS analysis. Chi and psi subunits of E. coli DNA polymerase III subunits appeared to form a heterodimer when crosslinked with heterobifunctional photoreactive crosslinkers.^ Comparison of relative % peak areas obtained from MALDI MS analysis of crosslinked proteins and densitometric scanning of silver stained sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) gels showed excellent qualitative agreement for the two techniques, but the quantitative analyses differed, sometimes significantly. This difference in quantitation could be due to SDS-PAGE conditions (differential staining, loss of sample) or to MALDI MS conditions (differences in ionization and/or detection). Investigation of pre-purified crosslinked monomers and dimers recombined in a specific ratio revealed the presence of mass discrimination in the MALDI MS process. The calculation of mass discrimination for two different MALDI time-of-flight instruments showed the loss of a factor of approximately 2.6 in relative peak area as the m/z value doubles over the m/z range from 30,000 to 145,000 daltons.^ Indirect symmetry was determined for tetramers using glutaraldehyde crosslinking with MALDI MS analysis. Mathematical modelling and simple graphing allowed the determination of the symmetry for several tetramers known to possess isologous D2 symmetry. These methods also distinguished tetramers that did not fit D2 symmetry such as apo-avidin. The gamma tetramer of E. coli DNA polymerase III appears to have isologous D2 symmetry. ^
Resumo:
Protein kinase C (PKC) is a family of serine-threonine kinases that are activated by a wide variety of hormones, neurotransmitters and growth factors. A single cell type contains multiple isoforms that are translocated to distinct and different subcellular sites upon mitogenic stimulus. Many different cellular responses are attributed to PKC activity though relatively few substrates or binding proteins have been definitively characterized. We used the hinge and catalytic domain of PKC$\alpha$ (PKC7) in a yeast two-hybrid screen to clone proteins that interact with C-kinase (PICKs). One protein which we have termed PICK1 may be involved in PKC$\alpha$-specific function at the level of the nuclear membrane after activation. Binding of PICK1 to PKC$\alpha$ has been shown to be isoform specific as it does not bind to PKC$\beta$II or PKC$\alpha$ in the yeast two-hybrid system. PICK1 mRNA expression level is highest in testis and brain with lower levels of expression in skeletal muscle, heart, kidney, lung and liver. PICK1 protein contains five PKC consensus phosphorylation sites and serves as an in vitro substrate for PKC. The PICK1 protein also contains a P-Loop motif that has been shown to bind ATP or GTP in the Ras family of oncoproteins as well as the G-Protein family. Proteins which bind ATP or GTP using this motif all have some sort of catalytic function although none has been identified for PICK1 as yet. PICK1 contains a DHR/GLGF motif at the N-terminus of the protein. The DHR/GLGF motif is contained in a number of recently described proteins and has been shown to mediate protein-protein interactions at the level of membranes and cytoskeleton. When both PKC$\alpha$ and PICK1 are co-expressed in Cos1 cells the two proteins co-localize to the perinucleus in immunoflouresence studies and co-immunoprecipitate. The binding site for PKC7 has been localized to amino acids 1-358 on PICK1 which contains the DHR/GLGF motif. Binding of PICK1 to PKC$\alpha$ requires the hinge and C-terminal domains of PKC$\alpha$. In vitro, PICK1 binds to PKC$\alpha$ and inhibits its activity as assayed by myelin basic protein phosphorylation. PICK1 also binds to TIS21, a primary response gene that is expressed in response to phorbol ester and growth factor treatment. The Caenorhabditis elegans homologue of PICK1 has been cloned and sequenced revealing a high degree of conservation in the DHR/GLGF motif. A more C-terminal region also shows a high degree of conservation, and the C. elegans PICK1 homologue binds to PKC7 suggesting a conservation of function. Taken together these results suggest that PICK1 may be involved in a PKC$\alpha$-specific function at the level of the nuclear membrane. ^
Resumo:
Cytochromes P450 are a superfamily of heme-thiolate proteins that function in a concert with another protein, cytochrome P450 reductase, as terminal oxidases of an enzymatic system catalyzing the metabolism of a variety of foreign compounds and endogenous substrates. In order to better understand P450s catalytic mechanism and substrate specificity, information about the structure of the active site is necessary. Given the lack of a crystal structure of mammalian P450, other methods have been used to elucidate the substrate recognition and binding site structure in the active center. In this project I utilized the photoaffinity labeling technique and site-directed mutagenesis approach to gain further structural insight into the active site of mammalian cytochrome P4501AI and examine the role of surface residues in the interaction of P4501A1 with the reductase. ^ Four crosslinked peptides were identified by photoaffinity labeling using diazido benzphetamine as a substrate analog. Alignment of the primary structure of cytochrome P4501A1 with that of bacterial cytochrome P450102 (the crystal structure of which is known) revealed that two of the isolated crosslinked peptides can be placed in the vicinity of heme (in the L helix region and β10-β11 sheet region of cytochrome P450102) and could be involved in substrate binding. The other two peptides were located on the surface of the protein with the label bound specifically to Lys residues that were proposed to be involved in reductase-P450 interaction. ^ Alternatively, it has been shown that some of the organic hydroperoxides can support P450 catalyzed reactions in the absence of NADPH, O2 and reductase. By means of photoaffinity labeling the cumene hydroperoxide binding region was identified. Using azidocumene as the photoaffinity label, the tripeptide T501-L502-K503 was shown to be the site where azidocumene covalently binds to P4501A1. The sequence alignment of cytochrome P4501A1 with cytochrome P450102 predicts that this region might correspond to β-sheet structure localized on the distal side of the heme ring near the I helix and the oxygen binding pocket. The role of Thr501 in the cumene hydroperoxide binding was confirmed by mutations of this residue and kinetic analysis of the effects of the mutations. ^ In addition, the role of two lysine residues, Lys271 and Lys279, in the interaction with reductase was examined by means of site-directed mutagenesis. The lysine residues were substituted with isoleucine and enzymatic activity of the wild type and the mutants were compared in reductase- and cumene hydroperoxide-supported systems. The lysine 279 residue has been shown to play a critical role in the P4501A1-reductase interaction. ^
Resumo:
This thesis project focused on understanding the basic process controlling cell proliferation in sex-steroid hormone dependent cancers. The availability of inculture models using cloned cell lines offers the greatest advantage for studying the control of this event. Incubation of cloned sex-hormone sensitive cells in medium containing increasing concentrations of sex-hormone stripped serum, results in a dose dependent growth inhibition; this inhibition is reversed by the addition of physiological concentrations of steroid hormones. The mechanisms explaining this phenomenon are not yet fully understood, but different theories propose the existence in serum of a sex hormone binding protein with growth inhibitory properties. We were able to identify a protein that specifically binds sex hormones in rat and horse serum with affinities 10-fold lower to the ones observed with the classic sex-hormone binding globulin (SHBG) in humans. Purification of this protein on a large scale Lowed a more detailed analysis. The putative sex-hormone binding protein has an apparent molecular weight of 386 KDa. SDS-PAGE with commassie staining of the purified product, displayed a pattern non-characteristic of SMG, but all bands cross-reacted with a commercial anti-SMG antibody in western analysis. Titrations of the purified product on cell proliferation assays using sex-hormone dependent lines, resulted in a dose dependent growth inhibition. This inhibition was reversed by the addition of sex hormones. Our results indicate that we have identified and purified a sex-hormone binding protein in serum with characteristics similar to SHBG and with cell growth inhibitory properties. ^
Resumo:
The study of colon cancer has taken advantage of the development of a model in animals in which tumors in the colon are easily induced by chemical treatment. When 1,2-dimethylhydrazine (DMH) is injected into rats tumor growth is observed in colon in preference to other tissues. This observation led us to investigate the Cytochrome P450 system in colon and its participation in the particular “colon sensitivity” to DMH. It has been established that the Cytochrome P450 system participates in the metabolism of DMH and the methyl carbonium product of Cytochrome P450 activation of DMH is responsible for DNA damage which is considered an initial step to carcinogenesis. The Cytochrome P450 system is a reasonable place to search for an explanation of this organotropic effect of DMH and we feel that the knowledge obtained from this study can take us closer to understanding the development of colonic malignancy. In our study we used a human colon cell line (LS174T) treated with DMH. The Cytochrome P450 system in the cells was manipulated with inducers of different isoforms of Cytochrome P450. The effect of DMH on colon cells was measured by determination of O-6-methylguanine which is a DNA adduct derived from the metabolism of this chemical and is associated with development of tumors. Our results support the hypothesis that Cytochrome P450 plays an important role in the damage to cellular DNA by DMH. This damage is increased after induction of Cytochromes P450 1A1 and 2E1. The effect of inhibition of the methyltransferase and glutathione systems on protection against DMH damage in colon demonstrated the importance of the protective role of the former and the lack of effective protection of the latter system. ^
Resumo:
Cytochrome P450 3As (CYP3As) are phase I enzymes responsible for metabolizing more than 50% of clinical drugs. Recent studies have revealed that expression of CYP3As is two-fold higher in women than in men leading to a faster metabolic clearance of therapeutic drugs in women. In this study, we analyzed the female specific rat CYP3A isoform, CYP3A9. We evaluated the effects of progesterone and estrogen on CYP3A9 regulation and showed a distinct role for estrogen in mediating female dominance of CYP3A9. We also observed changes in CYP3A9 expression at various stages of pregnancy which correlates well with varying physiological estradiol concentrations. In addition, by the in vitro data shows that estradiol mediated induction can be abrogated with estrogen receptor antagonist ICI182,780. We also identified three novel murine CYP3A isoforms CYP3A13, CYP3A41 and CYP3A44 and characterized their genomic structures and expression profiles. CYP3A41 and CYP3A44 show female specific expression but surprisingly this female dominance is not mediated via estrogen. Control male mice did not exhibit any CYP3A41 mRNA levels but showed minimal levels of CYP3A44. In order to gain insights into the governance ofαthe female specific genes, the hepatic regulation of CYP3A41 and CYP3A44 by the xeno-sensors PXR and CAR was examined. In female mice, pregnenolone-16α-carboxynitrile, suppressed CYP3A41 and CYP3A44 mRNA levels in PXR−/− background whereas dexamethasone-dependent suppression of CYP3A41 was mediated by PXR. In addition, phenobarbital challenge in PXR−/− revealed up-regulation of both CYP3A44, CYP3A41 levels only in males. No role for CAR was seen in the regulation of either CYP3A41 or CYP3A44 gene expression in female mice. Interestingly, PXR and CAR ligands induced male CYP3A44 levels in a receptor dependent fashion. This increase of CYP3A44 transcript in male mice is in contrast to the response seen in female mice, which clearly indicates an additional layer of regulation. Our findings suggest that gender plays a strategic role in directing the CAR/PXR mediated effects of CYP3A44/CYP3A41. This implies that differential regulation of female specific CYP3A isoforms may be the key to explain some of the gender differences observed in clearance of certain therapeutics like antidepressants and analgesics. ^
Resumo:
Angiogenesis is a feature of chronic lung diseases such as asthma and pulmonary fibrosis; however, the pathways controlling pathological angiogenesis during lung disease are not completely understood. Adenosine is a signaling nucleoside that accumulates as a result of tissue hypoxia and damage. Adenosine has been implicated in the exacerbation of chronic lung disease and in the regulation of angiogenesis; however, the relationship between these factors has not been investigated. The work presented in this dissertation utilized adenosine deaminase (ADA)-deficient mice to determine whether chronic elevations of adenosine in vivo result in pulmonary angiogenesis, and to identify factors that could potentially mediate this process. Results demonstrate that there is substantial angiogenesis in the tracheas of ADA-deficient mice in association with adenosine elevations. Replacement enzyme therapy with pegylated ADA resulted in a lowering of adenosine levels and reversal of tracheal angiogenesis, indicating that the increases in vessel number are dependent on adenosine elevations. Levels of the ELR+ angiogenic chemokine CXCL1 were found to be elevated in an adenosine-dependent manner in the lungs of ADA-deficient mice. Neutralization of CXCL1 and its putative receptor, CXCR2, in ADA-deficient lung lysates resulted in the inhibition of angiogenic activity suggesting that CXCL1 signaling through the CXCR2 receptor is responsible for mediating the observed increases in angiogenesis. Taken together, these findings suggest that adenosine plays an important role, via CXCL1, in the induction of pulmonary angiogenesis and may therefore represent an important therapeutic target for the treatment of pathological angiogenesis. ^
Resumo:
Disruption of the mechanisms that regulate cell-cycle checkpoints, DNA repair, and apoptosis results in genomic instability and often leads to the development of cancer. In response to double stranded breaks (DSBs) as induced by ionizing radiation (IR), generated during DNA replication, or through immunoglobulin heavy chain (IgH) rearrangements in T and B cells of lymphoid origin, the protein kinases ATM and ATR are central players that activate signaling pathways leading to DSB repair. p53 binding protein 1 (53BP1) participates in the repair of DNA double stranded breaks (DSBs) where it is recruited to or near sites of DNA damage. In addition to its well established role in DSB repair, multiple lines of evidence implicate 53BP1 in transcription which stem from its initial discovery as a p53 binding protein in a yeast two-hybrid screen. However, the mechanisms behind the role of 53BP1 in these processes are not well understood. ^ 53BP1 possesses several motifs that are likely important for its role in DSB repair including two BRCA1 C-terminal repeats, tandem Tudor domains, and a variety of phosphorylation sites. In addition to these motifs, we identified a glycine and arginine rich region (GAR) upstream of the Tudor domains, a sequence that is oftentimes serves as a site for protein arginine methylation. The focus of this project was to characterize the methylation of 53BP1 and to evaluate how methylation influenced the role of 53BP1 as a tumor suppressor. ^ Using a variety of biochemical techniques, we demonstrated that 53BP1 is methylated by the PRMT1 methyltransferase in vivo. Moreover, GAR methylation occurs on arginine residues in an asymmetric manner. We further show that sequences upstream of the Tudor domains that do not include the GAR stretch are sufficient for 53BP1 oligomerization in vivo. While investigating the role of arginine methylation in 53BP1 function, we discovered that 53BP1 associates with proteins of the general transcription apparatus as well as to other factors implicated in coordinating transcription with chromatin function. Collectively, these data support a role for 53BP1 in regulating transcription and provide insight into the possible mechanisms by which this occurs. ^
Resumo:
Glioblastoma multiforme is the most common form of brain cancer that presents patients with a poor prognosis that has remained unchanged over the past few decades. The tumor suppressor phosphatase PTEN antagonizes one of the major oncogenic pathways involved in the progression of glioblastoma, and is frequently deleted in this cancer type. Contrary to our expectations, we found that most glioblastoma cells expressing endogenous PTEN also harbor basal PI-3K/AKT activation mainly attributable to impaired PTEN membrane localization. This alteration correlated with a shift of the adaptor protein NHERF1, which contributes to PTEN membrane recruitment in normal cells, from the membrane to the cytoplasm. In cells expressing membrane-localized NHERF1, only simultaneous PTEN and NHERF1 depletion achieved AKT activation, suggesting the involvement of additional PI-3K/AKT suppressor regulated by NHERF1. We identified these novel interactors of NHERF1 as the PHLPP1 and PHLPP2 phosphatases. ^ NHERF1 directly interacted and recruited both PHLPP proteins to the membrane and, through both NHERF1 PDZ domains, assembled ternary complexes consisting of PTEN-NHERF1-PHLPP. Only simultaneous depletion of PTEN and PHLPP1 significantly activated AKT and increased proliferation in cells with membrane-localized NHERF1. Analysis of glioblastoma human tumors revealed frequent loss of membrane-localized NHERF1. On the other hand, targeting of NHERF1 to the membrane achieved suppression of AKT and cell proliferation. Our findings reveal a novel mechanism for PI-3K/AKT regulation by the synergistic cooperation between two important tumor suppressors, PTEN and PHLPP, via the scaffold protein NHERF1. ^
Resumo:
Introduction. Lake Houston serves as a reservoir for both recreational and drinking water for residents of Houston, Texas, and the metropolitan area. The Texas Commission on Environmental Quality (TCEQ) expressed concerns about the water quality and increasing amounts of pathogenic bacteria in Lake Houston (3). The objective of this investigation is to evaluate water quality for the presence of bacteria, nitrates, nitrites, carbon, phosphorus, dissolved oxygen, pH, turbidity, suspended solids, dissolved solids, and chlorine in Cypress Creek. The aims of this project are to analyze samples of water from Cypress Creek and to render a quantitative and graphical representation of the results. The collected information will allow for a better understanding of the aqueous environment in Cypress Creek.^ Methods. Water samples were collected in August 2009 and analyzed in the field and at UTSPH laboratory by spectrophotometry and other methods. Mapping software was utilized to develop novel maps of the sample sites using coordinates attained with the Global Positioning System (GPS). Sample sites and concentrations were mapped using Geographic Information System (GIS) software and correlated with permitted outfalls and other land use characteristic.^ Results. All areas sampled were positive for the presence of total coliform and Escherichia coli (E. coli). The presences of other water contaminants varied at each location in Cypress Creek but were under the maximum allowable limits designated by the Texas Commission on Environmental Quality. However, dissolved oxygen concentrations were elevated above the TCEQ limit of 5.0 mg/L at majority of the sites. One site had near-limit concentration of nitrates at 9.8 mg/L. Land use above this site included farm land, agricultural land, golf course, parks, residential neighborhoods, and nine permitted TCEQ effluent discharge sites within 0.5 miles upstream.^ Significance. Lake Houston and its tributary, Cypress Creek, are used as recreational waters where individuals may become exposed to microbial contamination. Lake Houston also is the source of drinking water for much of Houston/Harris and Galveston Counties. This research identified the presence of microbial contaminates in Cypress Creek above TCEQ regulatory requirements. Other water quality variables measured were in line with TCEQ regulations except for near-limit for nitrate at sample site #10, at Jarvis and Timberlake in Cypress Texas.^
Resumo:
Nonsense-mediated mRNA decay (NMD) is a quality control mechanism that degrades aberrant mRNAs harboring premature termination codons (PTCs). Two out of three T-cell receptor β (TCRβ) transcripts carry PTCs as a result of error-prone programmed rearrangements that occur at this locus during lymphocyte maturation. PTCs decrease TCRβ mRNA levels to a much greater extent than mRNAs transcribed from non-rearranging genes. This robust decrease in TCRβ mRNA levels is not a unique characteristic of the T-cell environment or the TCRβ promoter. The simplest explanation for this is that PTC-bearing TCRβ mRNAs elicit a stronger NMD response. An alternative explanation is NMD collaborates with another mechanism to dramatically decrease PTC-bearing TCRβ mRNA levels. ^ In my dissertation, I investigated the molecular mechanism behind the strong decrease in TCRβ mRNA levels triggered by PTCs. To determine the location of this response, I performed mRNA half-life analysis and found that PTCs elicited more rapid TCRβ mRNA decay in the nuclear fraction, not the cytoplasmic fraction. Although decay was restricted to the nuclear fraction, PTC-bearing TCRβ transcript levels were extremely low in the cytoplasm, a phenomenon that I named the nonsense-codon induced partitioning shift (NIPS). I established that NIPS shares several qualities with NMD, including its dependence on translation and NMD factors. Several lines of evidence suggested that NIPS results from PTCs eliciting retention of TCRβ transcripts in the nuclear fraction. This retention, as well as rapid TCRβ mRNA decay, most likely occurs in either the nucleoplasm or the outer nuclear membrane, based on analysis of nuclear and cytoplasmic markers in the highly purified nuclei I used for my studies. To further address the location of decay, I asked whether nuclear or cytoplasmic RNA decay factors mediated the destruction of PTC-bearing mRNAs. My results suggested that a nuclear component of the 3'-to-5' exosome, as well as an endonucleolytic activity, are involved in the destruction of PTC-containing TCRβ mRNAs. Individual endogenous NMD substrates had differential requirements for nuclear and cytoplasmic exonucleases. In summary, my results provide evidence that PTCs trigger multiple mechanisms involving multiple decay factors to remove and regulate mRNAs in mammalian cells. ^
Resumo:
I-compounds are newly discovered covalent DNA modifications detected by the $\sp{32}$P-postlabeling assay. They are age-dependent, tissue-specific and sex-different. The origin(s), chemistry and function(s) of I-compounds are unknown. The total level of I-compounds in 8-10 month old rat liver is 1 adduct in 10$\sp7$ nucleotides, which is not neglectable. It is proposed that I-compounds may play a role in spontaneous tumorigenesis and aging.^ In the present project, I-compounds were investigated by several different approaches. (1) Dietary modulation of I-compounds. (2) Comparison of I-compounds with persistent carcinogen DNA adducts and 5-methylcytosine. (3) Strain differences of I-compounds in relation to organ site spontaneous tumorigenesis. (4) Effects of nongenotoxic hepatocarcinogenes on I-compounds.^ It was demonstrated that the formation of I-compounds is diet-related. Rats fed natural ingredient diet exhibited more complex I-spot patterns and much higher levels than rats fed purified diet. Variation of major nutrients (carbohydrate, protein and fat) in the diet, produced quantitative differences in I-compounds of rat liver and kidney DNAs. Physiological level of vitamin E in the diet reduced intensity of one I-spot compared with vitamin E deficient diet. However, extremely high level of vitamin E in the diet gave extra spot and enhanced the intensities of some I-spots.^ In regenerating rat liver, I-compounds levels were reduced, as carcinogen DNA adducts, but not 5-methylcytosine, i.e. a normal DNA modification.^ Animals with higher incidences of spontaneous tumor or degenerative diseases tended to have a lower level of I-compounds.^ Choline devoid diet induced a drastic reduction of I-compound level in rat liver compared with choline supplemented diet. I-compound levels were reduced after multi-doses of carbon tetrachloride (CCl$\sb4$) exposure in rats and single dose exposure in mice. An inverse relationship was observed between I-compound level and DNA replication rate. CCl$\sb4$-related DNA adduct was detected in mice liver and intensities of some I-spots were enhanced 24 h after a single dose exposure.^ The mechanisms and explanations of these observations will be discussed. I-compounds are potentially useful indicators in carcinogenesis studies. ^
Resumo:
The recA gene is essential for SOS response induction, for inducible DNA repair and for homologous recombination in E. coli. The level of recA expression is significant for these functions. A basal level of about 1000 molecules of RecA protein is sufficient for homologous recombination of the cell and is essential for the induction of the SOS response. Based on previous observations, two models regarding the origin of the basal RecA protein were postulated. One was that it comes from the leaky expression of the LexA repressed promoter. The other was that it is from another weak but constitutive promoter. The first part of this thesis is to study these possibilities. An $\Omega$ cartridge containing the transcription terminator of gene 32 of T4 phage was exploited to define a second promoter for recA expression. Insertion of this $\Omega$ cartridge downstream of the known promoter gave rise to only minor expression. Purification and N-terminus sequencing of the RecA protein from the insertion mutant did not support the existence of a second promoter. To determine whether the basal RecA is due to the leaky expression of the known LexA repressed promoter, recA expression of a SOS induction minus strain (basal level expression of recA) was compared with that of a recA promoter down mutation recA1270. The result demonstrated that there is leaky expression from the LexA repressed promoter. All the evidence supports the conclusion that there is only one promoter for both basal and induced expression levels of recA.^ Several translation enhancer sequences which are complementary to different regions of the 16S rRNA were found to exist in recA mRNA. The leader sequence of recA mRNA is highly complementary to a region of the 16S rRNA. Thus it appeared that recA expression could be regulated at post-transcriptional levels. The second part of this thesis is focused on the study of the post-transcriptional control of recA expression. Deletions of the complementary regions were created to examine their effect on recA expression. The results indicated that all of the complementary regions were important for the normal expression of recA and their effects were post-transcriptional. RNA secondary structures of wild type recA mRNA was inspected and a stem-loop structure was revealed. The expression down mutations at codon 10 and 11 were found to stabilize this structure. The conclusions of the second part of this thesis are that there is post-transcriptional control for recA expression and the leader sequence of recA mRNA plays more than one role in the control of recA expression. ^
Resumo:
Stimulation of LM5 cells with the phorbol ester 4$\beta$-phorbol 12-myristate 13-acetate (PMA), causes a 2-4 fold sensitization of hormonally-stimulated adenylyl cyclase (AC) activity. This effect is thought to be due to protein kinase C (PKC)-mediated phosphorylation of either G$\sb{\rm i}$ or the catalytic subunit of AC. PKC are components of the phosphatidylinositol-4,5-bisphosphate phospholipase C (PIP$\sb2$-PLC) pathway. The currently accepted model of this pathway is that its activation by an agonist results in the production of inositol 1,4,5-triphosphate (IP$\sb3$) which causes Ca$\sp{++}$ mobilization, and 1,2-diacylglycerols (DAG) which activate PKC. Based on this model, we predicted that stimulation of purinergic and muscarinic receptors with the agonists ATP and carbachol (CCh), respectively in the LM5 cells, should sensitize AC. Surprisingly we found that only stimulation of the purinergic receptors in these cells caused a sensitization of PGE$\sb1$-stimulated AC measured in cell-free assays.^ We hypothesized that ATP-and CCh-stimulated differential DAG production contributes to the effectiveness of these two agonists to sensitize PGE$\sb1$-stimulated AC activity. To test this hypothesis directly, we performed a combined high-performance liquid chromatography and gas-liquid chromatography analysis of the DAG produced in the LM5 cells in response to stimulation with ATP and CCh.^ We found that both ATP and CCh increased levels of 23 species of DAG. Relative to the control levels (0.261 nmol DAG/100 nmol phospholipid) the CCh-induced increase in DAG levels was 280% (0.738 $\pm$ 0.051 nmol DAG/100 nmol phospholipid) whereas the ATP-induced levels increased 180% (0.441 t 0.006 nmol DAG/100 nmol phospholipid). Neither agonist created new species or eliminated the existing ones. The major species which comprised $\approx$50% of the total cellular DAG in all of the groups were 16:0-18:1, 18:0-18:1, 18:1-18:1, and 18:0-20:4. CCh was more effective than ATP at stimulating these major DAG species.^ It is concluded that factor(s) other than DAG contribute(s) to the differences between ATP-and CCh-sensitization of PGE$\sb1$-stimulated AC activity in the LM5 cells. ^
Resumo:
Human heparin/heparan sulfate interacting protein/L29 (HIP/L29) is a heparin/heparan sulfate (Hp/HS) binding protein found in many adult human tissues. Potential functions of this protein are promotion of embryo adhesion, modulation of blood coagulation, and control of cell growth. While these activities are diverse, the ability of human HIP/L29 to interact with Hp/HS at the cell surface may be a unifying mechanism of action since Hp/HS influences all of these processes. A murine ortholog has been identified that has 78.8% homology over the entire sequence and identity over the N-terminal 64 amino acids when compared to human HIP/L29. Northern, Western, and immunohistochemical analysis shows that murine HIP/L29 mRNA and protein are expressed in a tissue specific manner. Murine HIP/L29 is enriched in the membrane fraction of NmuMG cells where it is eluted with high salt, suggesting that it is a peripheral membrane protein. The ability of murine HIP/L29 to bind Hp is verified by studies using native and recombinant forms of murine HIP/L29. A synthetic peptide (HIP peptide-2) derived from the identical N-terminal region of HIP/L29 proteins was tested for the ability to bind Hp and support cell adhesion. This peptide was chosen because it conforms to a proposed consensus sequence for Hp/HS binding peptides. HIP peptide-2 binds Hp in a dose-dependent, saturable, and selective manner and supports Hp-dependent cell adhesion. However, a scrambled form of this peptide displayed similar activities indicating a lack of peptide sequence specificity required for activity. Lastly, an unbiased approach was used to identify sequences within human and mouse HIP/L29 proteins necessary for Hp/HS binding. A panel of recombinant proteins was made that collectively are deficient in every human HIP/L29 domain. The activities of these deletion mutants and recombinant murine HIP/L29 were compared to the activity of recombinant human HIP/L29 in a number of assays designed to look at differences in the ability to bind Hp/HS. These studies suggest that each domain within human HIP/L29 is important for binding to Hp/HS and divergences in the C-terminus of human and mouse HIP/L29 account for a decrease in murine HIP/L29 affinity for Hp/HS. It is apparent that multiple domains within human and mouse HIP/L29 contribute to the function of Hp/HS binding. The interaction of multiple HIP/L29 domains with Hp/HS will influence the biological activity of HIP/L29 proteins. ^