26 resultados para Bayesian hierarchical linear model
Resumo:
Left ventricular mass (LVM) is a strong predictor of cardiovascular disease (CVD) in adults. However, normal growth of LVM in healthy children is not well understood, and previous results on independent effects of body size and body fatness on LVM have been inconsistent. The purpose of this study was (1) to establish the normal growth curve of LVM from age 8 to age 18, and evaluate the determinants of change in LVM with age, and (2) to assess the independent effects of body size and body fatness on LVM.^ In Project HeartBeat!, 678 healthy children aged 8, 11 and 14 years at baseline were enrolled and examined at 4-monthly intervals for up to 4 years. A synthetic cohort with continuous observations from age 8 to 18 years was constructed. A total of 4608 LVM measurements was made from M-mode echocardiography. The multilevel linear model was used for analysis.^ Sex-specific trajectories of normal growth of LVM from age 8 to 18 was displayed. On average, LVM was 15 g higher in males than females. Average LVM increased linearly in males from 78 g at age 8 to 145 g at age 18. For females, the trajectory was curvilinear, nearly constant after age 14. No significant racial differences were found. After adjustment for the effects of body size and body fatness, average LVM decreased slightly from age 8 to 18, and sex differences in changes of LVM remained constant.^ The impact of body size on LVM was examined by adding to a basic LVM-sex-age model one of 9 body size indicators. The impact of body fatness was tested by further introducing into each of the 9 LVM models (with one or another of the body size indicators) one of 4 body fatness indicators, yielding 36 models with different body size and body fatness combinations. The results indicated that effects of body size on LVM can be distinguished between fat-free body mass and fat body mass, both being independent, positive predictors. The former is the stronger determinant. When a non-fat-free body size indicator is used as predictor, the estimated residual effect of body fatness on LVM becomes negative. ^
Resumo:
Coronary heart disease remains the leading cause of death in the United States and increased blood cholesterol level has been found to be a major risk factor with roots in childhood. Tracking of cholesterol, i.e., the tendency to maintain a particular cholesterol level relative to the rest of the population, and variability in blood lipid levels with increase in age have implications for cholesterol screening and assessment of lipid levels in children for possible prevention of further rise to prevent adulthood heart disease. In this study the pattern of change in plasma lipids, over time, and their tracking were investigated. Also, within-person variance and retest reliability defined as the square root of within-person variance for plasma total cholesterol, HDL-cholesterol, LDL-cholesterol, and triglycerides and their relation to age, sex and body mass index among participants from age 8 to 18 years were investigated. ^ In Project HeartBeat!, 678 healthy children aged 8, 11 and 14 years at baseline were enrolled and examined at 4-monthly intervals for up to 4 years. We examined the relationship between repeated observations by Pearson's correlations. Age- and sex-specific quintiles were calculated and the probability of participants to remain in the uppermost quintile of their respective distribution was evaluated with life table methods. Plasma total cholesterol, HDL-C and LDL-C at baseline were strongly and significantly correlated with measurements at subsequent visits across the sex and age groups. Plasma triglyceride at baseline was also significantly correlated with subsequent measurements but less strongly than was the case for other plasma lipids. The probability to remain in the upper quintile was also high (60 to 70%) for plasma total cholesterol, HDL-C and LDL-C. ^ We used a mixed longitudinal, or synthetic cohort design with continuous observations from age 8 to 18 years to estimate within person variance of plasma total cholesterol, HDL-C, LDL-C and triglycerides. A total of 5809 measurements were available for both cholesterol and triglycerides. A multilevel linear model was used. Within-person variance among repeated measures over up to four years of follow-up was estimated for total cholesterol, HDL-C, LDL-C and triglycerides separately. The relationship of within-person and inter-individual variance with age, sex, and body mass index was evaluated. Likelihood ratio tests were conducted by calculating the deviation of −2log (likelihood) within the basic model and alternative models. The square root of within-person variance provided the retest reliability (within person standard deviation) for plasma total cholesterol, HDL-C, LDL-C and triglycerides. We found 13.6 percent retest reliability for plasma cholesterol, 6.1 percent for HDL-cholesterol, 11.9 percent for LDL-cholesterol and 32.4 percent for triglycerides. Retest reliability of plasma lipids was significantly related with age and body mass index. It increased with increase in body mass index and age. These findings have implications for screening guidelines, as participants in the uppermost quintile tended to maintain their status in each of the age groups during a four-year follow-up. The magnitude of within-person variability of plasma lipids influences the ability to classify children into risk categories recommended by the National Cholesterol Education Program. ^
Resumo:
Background. The purpose of this study was to describe the risk factors and demographics of persons with salmonellosis and shigellosis and to investigate both seasonal and spatial variations in the occurrence of these infections in Texas from 2000 to 2004, utilizing time series analyses and the geographic information system digital mapping methods. ^ Methods. Spatial Analysis: MapInfo software was used to map the distribution of age-adjusted rates of reported shigellosis and salmonellosis in Texas from 2000–2004 by zip codes. Census data on above or below poverty level, household income, highest level of educational attainment, race, ethnicity, and urban/rural community status was obtained from the 2000 Decennial Census for each zip code. The zip codes with the upper 10% and lower 10% were compared using t-tests and logistic regression to determine whether there were any potential risk factors. ^ Temporal analysis. Seasonal patterns in the prevalence of infections in Texas from 2000 to 2003 were determined by performing time-series analysis on the numbers of cases of salmonellosis and shigellosis. A linear regression was also performed to assess for trends in the incidence of each disease, along with auto-correlation and multi-component cosinor analysis. ^ Results. Spatial analysis: Analysis by general linear model showed a significant association between infection rates and age, with young children aged less than 5 and those aged 5–9 years having increased risk of infection for both disease conditions. The data demonstrated that those populations with high percentages of people who attained a higher than high school education were less likely to be represented in zip codes with high rates of shigellosis. However, for salmonellosis, logistic regression models indicated that when compared to populations with high percentages of non-high school graduates, having a high school diploma or equivalent increased the odds of having a high rate of infection. ^ Temporal analysis. For shigellosis, multi-component cosinor analyses were used to determine the approximated cosine curve which represented a statistically significant representation of the time series data for all age groups by sex. The shigellosis results show 2 peaks, with a major peak occurring in June and a secondary peak appearing around October. Salmonellosis results showed a single peak and trough in all age groups with the peak occurring in August and the trough occurring in February. ^ Conclusion. The results from this study can be used by public health agencies to determine the timing of public health awareness programs and interventions in order to prevent salmonellosis and shigellosis from occurring. Because young children depend on adults for their meals, it is important to increase the awareness of day-care workers and new parents about modes of transmission and hygienic methods of food preparation and storage. ^
Resumo:
Unlike infections occurring during periods of chemotherapy-induced neutropenia, postoperative infections in patients with solid malignancy remain largely understudied. The purpose of this population-based study was to evaluate the clinical and economic burden, as well as the relationship of hospital surgical volume and outcomes associated with serious postoperative infection (SPI) – i.e., bacteremia/sepsis, pneumonia, and wound infection – following resection of common solid tumors.^ From the Texas Discharge Data Research File, we identified all Texas residents who underwent resection of cancer of the lung, esophagus, stomach, pancreas, colon, or rectum between 2002 and 2006. From their billing records, we identified ICD-9 codes indicating SPI and also subsequent SPI-related readmissions occurring within 30 days of surgery. Random-effects logistic regression was used to calculate the impact of SPI on mortality, as well as the association between surgical volume and SPI, adjusting for case-mix, hospital characteristics, and clustering of multiple surgical admissions within the same patient and patients within the same hospital. Excess bed days and costs were calculated by subtracting values for patients without infections from those with infections computed using multilevel mixed-effects generalized linear model by fitting a gamma distribution to the data using log link.^ Serious postoperative infection occurred following 9.4% of the 37,582 eligible tumor resections and was independently associated with an 11-fold increase in the odds of in-hospital mortality (95% Confidence Interval [95% CI], 6.7-18.5, P < 0.001). Patients with SPI required 6.3 additional hospital days (95% CI, 6.1 - 6.5) at an incremental cost of $16,396 (95% CI, $15,927–$16,875). There was a significant trend toward lower overall rates of SPI with higher surgical volume (P=0.037). ^ Due to the substantial morbidity, mortality, and excess costs associated with SPI following solid tumor resections and given that, under current reimbursement practices, most of this heavy burden is borne by acute care providers, it is imperative for hospitals to identify more effective prophylactic measures, so that these potentially preventable infections and their associated expenditures can be averted. Additional volume-outcomes research is also needed to identify infection prevention processes that can be transferred from higher- to lower-volume providers.^
Resumo:
Generalized linear Poisson and logistic regression models were utilized to examine the relationship between temperature and precipitation and cases of Saint Louis encephalitis virus spread in the Houston metropolitan area. The models were investigated with and without repeated measures, with a first order autoregressive (AR1) correlation structure used for the repeated measures model. The two types of Poisson regression models, with and without correlation structure, showed that a unit increase in temperature measured in degrees Fahrenheit increases the occurrence of the virus 1.7 times and a unit increase in precipitation measured in inches increases the occurrence of the virus 1.5 times. Logistic regression did not show these covariates to be significant as predictors for encephalitis activity in Houston for either correlation structure. This discrepancy for the logistic model could be attributed to the small data set.^ Keywords: Saint Louis Encephalitis; Generalized Linear Model; Poisson; Logistic; First Order Autoregressive; Temperature; Precipitation. ^
Resumo:
Objective: In this secondary data analysis, three statistical methodologies were implemented to handle cases with missing data in a motivational interviewing and feedback study. The aim was to evaluate the impact that these methodologies have on the data analysis. ^ Methods: We first evaluated whether the assumption of missing completely at random held for this study. We then proceeded to conduct a secondary data analysis using a mixed linear model to handle missing data with three methodologies (a) complete case analysis, (b) multiple imputation with explicit model containing outcome variables, time, and the interaction of time and treatment, and (c) multiple imputation with explicit model containing outcome variables, time, the interaction of time and treatment, and additional covariates (e.g., age, gender, smoke, years in school, marital status, housing, race/ethnicity, and if participants play on athletic team). Several comparisons were conducted including the following ones: 1) the motivation interviewing with feedback group (MIF) vs. the assessment only group (AO), the motivation interviewing group (MIO) vs. AO, and the intervention of the feedback only group (FBO) vs. AO, 2) MIF vs. FBO, and 3) MIF vs. MIO.^ Results: We first evaluated the patterns of missingness in this study, which indicated that about 13% of participants showed monotone missing patterns, and about 3.5% showed non-monotone missing patterns. Then we evaluated the assumption of missing completely at random by Little's missing completely at random (MCAR) test, in which the Chi-Square test statistic was 167.8 with 125 degrees of freedom, and its associated p-value was p=0.006, which indicated that the data could not be assumed to be missing completely at random. After that, we compared if the three different strategies reached the same results. For the comparison between MIF and AO as well as the comparison between MIF and FBO, only the multiple imputation with additional covariates by uncongenial and congenial models reached different results. For the comparison between MIF and MIO, all the methodologies for handling missing values obtained different results. ^ Discussions: The study indicated that, first, missingness was crucial in this study. Second, to understand the assumptions of the model was important since we could not identify if the data were missing at random or missing not at random. Therefore, future researches should focus on exploring more sensitivity analyses under missing not at random assumption.^
Resumo:
Background Past and recent evidence shows that radionuclides in drinking water may be a public health concern. Developmental thresholds for birth defects with respect to chronic low level domestic radiation exposures, such as through drinking water, have not been definitely recognized, and there is a strong need to address this deficiency in information. In this study we examined the geographic distribution of orofacial cleft birth defects in and around uranium mining district Counties in South Texas (Atascosa, Bee, Brooks, Calhoun, Duval, Goliad, Hidalgo, Jim Hogg, Jim Wells, Karnes, Kleberg, Live Oak, McMullen, Nueces, San Patricio, Refugio, Starr, Victoria, Webb, and Zavala), from 1999 to 2007. The probable association of cleft birth defect rates by ZIP codes classified according to uranium and radium concentrations in drinking water supplies was evaluated. Similar associations between orofacial cleft birth defects and radium/radon in drinking water were reported earlier by Cech and co-investigators in another of the Gulf Coast region (Harris County, Texas).50, 55 Since substantial uranium mining activity existed and still exists in South Texas, contamination of drinking water sources with radiation and its relation to birth defects is a ground for concern. ^ Methods Residential addresses of orofacial cleft birth defect cases, as well as live births within the twenty Counties during 1999-2007 were geocoded and mapped. Prevalence rates were calculated by ZIP codes and were mapped accordingly. Locations of drinking water supplies were also geocoded and mapped. ZIP codes were stratified as having high combined uranium (≥30μg/L) vs. low combined uranium (<30μg/L). Likewise, ZIP codes having the uranium isotope, Ra-226 in drinking water, were also stratified as having elevated radium (≥3 pCi/L) vs. low radium (<3 pCi/L). A linear regression was performed using STATA® generalized linear model (GLM) program to evaluate the probable association between cleft birth defect rates by ZIP codes and concentration of uranium and radium via domestic water supply. These rates were further adjusted for potentially confounding variables such as maternal age, education, occupation, and ethnicity. ^ Results This study showed higher rates of cleft births in ZIP codes classified as having high combined uranium versus ZIP codes having low combined uranium. The model was further improved by adding radium stratified as explained above. Adjustment for maternal age and ethnicity did not substantially affect the statistical significance of uranium or radium concentrations in household water supplies. ^ Conclusion Although this study lacks individual exposure levels, the findings suggest a significant association between elevated uranium and radium concentrations in tap water and high orofacial birth defect rates by ZIP codes. Future case-control studies that can measure individual exposure levels and adjust for contending risk factors could result in a better understanding of the exposure-disease association.^
Resumo:
Background. Similar to parent support in the home environment, teacher support at school may positively influence children's fruit and vegetable (FV) consumption. This study assessed the relationship between teacher support for FV consumption and the FV intake of 4th and 5th grade students in low-income elementary schools in central Texas. Methods. A secondary analysis was performed on baseline data collected from 496 parent-child dyads during the Marathon Kids study carried out by the Michael & Susan Dell Center for Healthy Living at the University of Texas School of Public Health. A hierarchical linear regression analysis adjusting for key demographic variables, parent support, and home FV availability was conducted. In addition, separate linear regression models stratified by quartiles of home FV availability were conducted to assess the relationship between teacher support and FV intake by level of home FV availability. Results. Teacher support was not significantly related to students' FV intake (p = .44). However, the interaction of teacher support and home FV availability was positively associated with students' FV consumption (p < .05). For students in the lowest quartile of home FV availability, teacher support accounted for approximately 6% of the FV intake variance (p = .02). For higher levels of FV availability, teacher support and FV intake were not related. Conclusions. For lower income elementary school-aged children with low FV availability at home, greater teacher support may lead to modest increases in FV consumption.^
Resumo:
The infant mortality rate (IMR) is considered to be one of the most important indices of a country's well-being. Countries around the world and other health organizations like the World Health Organization are dedicating their resources, knowledge and energy to reduce the infant mortality rates. The well-known Millennium Development Goal 4 (MDG 4), whose aim is to archive a two thirds reduction of the under-five mortality rate between 1990 and 2015, is an example of the commitment. ^ In this study our goal is to model the trends of IMR between the 1950s to 2010s for selected countries. We would like to know how the IMR is changing overtime and how it differs across countries. ^ IMR data collected over time forms a time series. The repeated observations of IMR time series are not statistically independent. So in modeling the trend of IMR, it is necessary to account for these correlations. We proposed to use the generalized least squares method in general linear models setting to deal with the variance-covariance structure in our model. In order to estimate the variance-covariance matrix, we referred to the time-series models, especially the autoregressive and moving average models. Furthermore, we will compared results from general linear model with correlation structure to that from ordinary least squares method without taking into account the correlation structure to check how significantly the estimates change.^
Resumo:
Cardiovascular disease (CVD) is a threat to public health. It has been reported to be the leading cause of death in United States. The invention of next generation sequencing (NGS) technology has revolutionized the biomedical research. To investigate NGS data of CVD related quantitative traits would contribute to address the unknown etiology and disease mechanism of CVD. NHLBI's Exome Sequencing Project (ESP) contains CVD related phenotypes and their associated NGS exomes sequence data. Initially, a subset of next generation sequencing data consisting of 13 CVD-related quantitative traits was investigated. Only 6 traits, systolic blood pressure (SBP), diastolic blood pressure (DBP), height, platelet counts, waist circumference, and weight, were analyzed by functional linear model (FLM) and 7 currently existing methods. FLM outperformed all currently existing methods by identifying the highest number of significant genes and had identified 96, 139, 756, 1162, 1106, and 298 genes associated with SBP, DBP, Height, Platelet, Waist, and Weight respectively. ^
New methods for quantification and analysis of quantitative real-time polymerase chain reaction data
Resumo:
Quantitative real-time polymerase chain reaction (qPCR) is a sensitive gene quantitation method that has been widely used in the biological and biomedical fields. The currently used methods for PCR data analysis, including the threshold cycle (CT) method, linear and non-linear model fitting methods, all require subtracting background fluorescence. However, the removal of background fluorescence is usually inaccurate, and therefore can distort results. Here, we propose a new method, the taking-difference linear regression method, to overcome this limitation. Briefly, for each two consecutive PCR cycles, we subtracted the fluorescence in the former cycle from that in the later cycle, transforming the n cycle raw data into n-1 cycle data. Then linear regression was applied to the natural logarithm of the transformed data. Finally, amplification efficiencies and the initial DNA molecular numbers were calculated for each PCR run. To evaluate this new method, we compared it in terms of accuracy and precision with the original linear regression method with three background corrections, being the mean of cycles 1-3, the mean of cycles 3-7, and the minimum. Three criteria, including threshold identification, max R2, and max slope, were employed to search for target data points. Considering that PCR data are time series data, we also applied linear mixed models. Collectively, when the threshold identification criterion was applied and when the linear mixed model was adopted, the taking-difference linear regression method was superior as it gave an accurate estimation of initial DNA amount and a reasonable estimation of PCR amplification efficiencies. When the criteria of max R2 and max slope were used, the original linear regression method gave an accurate estimation of initial DNA amount. Overall, the taking-difference linear regression method avoids the error in subtracting an unknown background and thus it is theoretically more accurate and reliable. This method is easy to perform and the taking-difference strategy can be extended to all current methods for qPCR data analysis.^