83 resultados para Apoptosis - Theses


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cancer cause of death in the US. Gemcitabine is the first-line therapy for this disease, but unfortunately it shows only very modest benefit. The focus of the current study was to investigate the role and regulation of EphA2, a receptor tyrosine kinase expressed in PDAC, to further understand this disease and identify new therapeutic targets. The role of EphA2 was determined in PDAC by siRNA mediated silencing. In combination with gemcitabine, silencing of EphA2 caused a dramatic increase in apoptosis even in highly resistant cells in vitro. Furthermore, EphA2 silencing was found to be useful in 2 orthotopic models in vivo: 1) shRNA-pretreated Miapaca-2 cells, and 2) in vivo delivery of siRNA to established MPanc96 tumors. Silencing of EphA2 alone reduced tumor growth in Miapaca-2 cells. In MPanc96, only the combination treatment of gemcitabine plus siEphA2 significantly reduced tumor growth, as well as the number of lung and liver metastases. Taken together, these observations support EphA2 as a target for combination therapies for PDAC. The regulation of EphA2 was further explored with a focus on the role of Ras. K-Ras activating mutations are the most important initiating event in PDAC. We demonstrated that Ras regulates EphA2 expression through activation of MEK2 and phosphorylation of ERK. Downstream of ERK, silencing of the transcription factor AP-1 subunit c-Jun or inhibition of the ERK effector RSK caused a decrease in EphA2 expression, supporting their roles in this process. Further examination of Ras/MEK/ERK pathway modulators revealed that PEA-15, a protein that sequesters ERK to the cytoplasm, inhibited expression of EphA2. A significant inverse correlation between EphA2 and PEA-15 levels was observed in mouse models of PDAC. In cells where an EGFR inhibitor reduced phospho-Erk, expression of EphA2 was also reduced, indicating that changes in EphA2 levels may allow monitoring the effectiveness of anti-Ras/MEK/ERK therapies. In conclusion, EphA2 levels may be a good prognostic factor for anti-EGFR/anti-Ras therapies, and EphA2 itself is a relevant target for the development of new therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effects of Combined Bevacizumab and Paclitaxel on Tumor Interstitial Fluid Pressure in a Preclinical Breast Cancer Model by Ricardo H. Alvarez Several mechanisms of cell resistance are often accountable for unsuccessful chemotherapy against cancer. Another reason, which has received increased attention, is the inefficient transport of anticancer drugs into tumor tissue. These impaired transports of chemotherapy into the tumor have been attributed to abnormal microvasculature and to pathologically increased tumor hypertension also called: interstitial fluid pressure (IFP). The pathophysiological processes leading to elevated tumor IFP are poorly understood. Here, in a preclinical breast cancer model, it is argued that a condition of raised IFP is a major factor in preventing optimal access of systemically administered chemotherapy agents. In our experimental model, we used a GILM2 human breast cancer in xenografts; mice were treated with different doses of paclitaxel –a widely used antimicrotubular agent, and bevacizumab –monoclonal antibody against vascular endothelial growth factor (VEGF). The proposed research project is designed to test the hypothesis that paclitaxel in combination with bevacizumab decreases the tumor IPF by restoring tumor permeability and increasing chemotherapy delivery. We demonstrated that the combination of paclitaxel and bevacizumab produced greater tumor control than either agent given alone and this combination reduced the IFP, producing an increment of 75% of apoptosis compared with the control arm. In addition, the intra-tumor paclitaxel quantification by liquid chromatography/Mass Spectrometry (LC/MS) demonstrated that lower dose of both agents showed a synergistic effect compared with high dose of treatment, where there is no significantly increase of paclitaxel into the tumor. These preclinical results are likely to have broad implications for the utility of anti-angiogenic therapies alone and in combination with chemotherapeutic agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in the western countries. The interaction between CLL cells and the bone marrow stromal environment is thought to play a major role in promoting the leukemia cell survival and drug resistance. My dissertation works proved a novel biochemical mechanism by which the bone marrow stromal cells exert a profound influence on the redox status of primary CLL cells and enhance their ability to sustain oxidative stress and drug treatment. Fresh leukemia cells isolated from the peripheral blood of CLL patients exhibited two major redox alterations when they were cultured alone: a significant decrease in cellular glutathione (GSH) and an increase in basal ROS levels. However, when cultured in the presence of bone marrow stromal cells, CLL cells restored their redox balance with an increased synthesis of GSH, a decrease in spontaneous apoptosis, and an improved cell survival. Further study showed that CLL cells were under intrinsic ROS stress and highly dependent on GSH for survival, and that the bone marrow stromal cells promoted GSH synthesis in CLL cells through a novel biochemical mechanism. Cysteine is a limiting substrate for GSH synthesis and is chemically unstable. Cells normally obtain cysteine by uptaking the more stable and abundant precursor cystine from the tissue environment and convert it to cysteine intracellularly. I showed that CLL cells had limited ability to take up extracellular cystine for GSH synthesis due to their low expression of the transporter Xc-, but had normal ability to uptake cysteine. In the co-culture system, the bone marrow stromal cells effectively took up cystine and reduced it to cysteine for secretion into the tissue microenvironment to be taken up by CLL cells for GSH synthesis. The elevated GSH in CLL cells in the presence of bone marrow stromal cells significantly protected the leukemia cells from stress-induced apoptosis, and rendered them resistant to standard therapeutic agents such as fludarabine and oxaliplatin. Importantly, disabling of this protective mechanism by depletion of cellular GSH using a pharmacological approach potently sensitized CLL cells to drug treatment, and effectively enhanced the cytotoxic action of fludarabine and oxaliplatin against CLL in the presence of stromal cells. This study reveals a key biochemical mechanism of leukemia-stromal cells interaction, and identifies a new therapeutic strategy to overcome drug resistance in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pancreatic ductal adenocarcinoma (PDAC) represents the fourth most common cause of cancer-associated death in the United States. Little progress has been made in understanding how proteotoxic stress affects rapidly proliferating pancreatic tumor cells. Endoplasmic reticulum (ER) stress occurs when protein homeostasis in the ER lumen is perturbed. ER stress activates the unfolded protein response (UPR) to reduce the protein load in the ER. Under conditions of moderate ER stress, the UPR promotes cell cycle arrest which allows time for successful protein load reduction and enables cell survival. However, under conditions of high levels of ER stress the UPR induces cellular apoptosis. In this dissertation, I investigated the role of endoplasmic reticulum (ER) stress and its effects on the cell cycle in pancreatic cancer cells. Activation of the unfolded protein response after ER stress induction was determined by comparing expression of key UPR mediators in non-tumorigenic pancreatic ductal cells to pancreatic cancer cells. Two arms of the UPR were assessed: eIF2α/ATF4/CHOP and IRE1α/XBP1s. Pancreatic cancer cells exhibited altered UPR activation characterized by a delay in both phosphorylation of eIF2α and induction of spliced XBP1. Further evaluation of the UPR-mediated effects on cell cycle progression revealed that pancreatic cancer cells showed a compromised ability to inhibit G1 to S phase progression after ER stress. This reduced ability to arrest proliferation was found to be due to an impaired ability to downregulate cyclin D1, a key gatekeeper of the G1/S checkpoint. Abrogation of cyclin D1 repression was mediated through a slow induction of phosphorylation of eIF2α, a critical mediator of translational attenuation in response to ER stress. In conclusion, pancreatic cancer cells demonstrate a globally compromised ability to regulate the unfolded protein response. This deficiency results in reduced cyclin D1 repression through an eIF2α-mediated mechanism. These findings indicate that pancreatic cancer cells have increased tolerance for elevated ER stress compared to normal cells, and this tolerance results in continued tumor cell proliferation under proteotoxic conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We previously demonstrated that bone marrow cells (BMCs) migrate to TC71 and A4573 Ewing’s sarcoma tumors where they can differentiate into endothelial cells (ECs) and pericytes and, participate in the tumor vascular development. This process of neo-vascularization, known as vasculogenesis, is essential for Ewing’s sarcoma growth with the soluble vascular endothelial growth factor, VEGF165, being the chemotactic factor for BMC migration to the tumor site. Inhibiting VEGF165 in TC71 tumors (TC/siVEGF7-1) inhibited BMC infiltration to the tumor site and tumor growth. Introducing the stromal-derived growth factor (SDF-1α) into the TC/siVEGF7-1 tumors partially restored vasculogenesis with infiltration of BMCs to a perivascular area where they differentiated into pericytes and rescued tumor growth. RNA collected from the SDF--treated TC/siVEGF7-1 tumors also revealed an increase in platelet-derived growth factor B (PDGF-B) mRNA levels. PDGF-B expression is elevated in several cancer types and the role of PDGF-B and its receptor, PDGFR-β, has been extensively described in the process of pericyte maturation. However, the mechanisms by which PDGF-B expression is up-regulated during vascular remodeling and the process by which BMCs differentiate into pericytes during tumor vasculogenesis remain areas of investigation. In this study, we are the first to demonstrate that SDF-1α regulates the expression of PDGF-B via a transcriptional mechanism which involves binding of the ELK-1 transcription factor to the pdgf-b promoter. We are also first to validate the critical role of the SDF-1α/PDGF-B pathway in the differentiation of BMCs into pericytes both in vitro and in vivo. SDF-1α up-regulated PDGF-B expression in both TC/siVEGF7-1 and HEK293 cells. In contrast, down-regulating SDF-1α, down-regulated PDGF-B. We cloned the 2 kb pdgf-b promoter fragment into the pGL3 reporter vector and showed that SDF-1α induced pdgf-b promoter activity. We used chromatin immunoprecipitation (ChIP) and demonstrated that the ELK-1 transcription factor bound to the pdgf-b promoter in response to SDF-1α stimulation in both TC/siVEGF7-1 and HEK293 cells. We collected BMCs from the hind femurs of mice and cultured the cells in medium containing SDF-1α and PDGF-B and found that PDGFR-β+ BMCs differentiated into NG2 and desmin positive pericytes in vitro. In contrast, inhibiting SDF-1α and PDGF-B abolished this differentiation process. In vivo, we injected TC71 or A4573 tumor-bearing mice with the SDF-1α antagonist, AMD3100 and found that inhibiting SDF-1α signaling in the tumor microenvironment decreased the tumor microvessel density, decreased the tumor blood vessel perfusion and, increased tumor cell apoptosis. We then analyzed the effect of AMD3100 on vasculogenesis of Ewing’s sarcoma and found that BMCs migrated to the tumor site where they differentiated into ECs but, they did not form thick perivascular layers of NG2 and desmin positive pericytes. Finally, we stained the AMD3100-treated tumors for PDGF-B and showed that inhibiting SDF-1α signaling also inhibited PDGF-B expression. All together, these findings demonstrated that the SDF-1α/PDGF-B pathway plays a critical role in the formation of BM-derived pericytes during vasculogenesis of Ewing’s sarcoma tumors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mitotic kinase Aurora B plays a pivotal role in mitosis and cytokinesis and governs the spindle assembly checkpoint which ensures correct chromosome segregation and normal progression through mitosis. Aurora B is overexpressed in breast and other cancers and may be an important molecular target for chemotherapy. Tumor suppressor p53 is the guardian of the genome and an important negative regulator of the cell cycle. Previously, it was unknown whether Aurora B and p53 had mutual regulation during the cell cycle. A small molecule specific inhibitor of Aurora B, AZD1152, gave us an indication that Aurora B negatively impacted p53 during interphase and mitosis. Here, we show the antineoplastic activity of AZD1152 in six human breast cancer cell lines, three of which overexpress HER2. AZD1152 specifically inhibited Aurora B kinase activity, thereby causing mitotic catastrophe, polyploidy and apoptosis, which in turn led to apoptotic death. Further, AZD1152 administration efficiently suppressed tumor growth in orthotopic and metastatic breast cancer cell xenograft models. Notably, it was found that the protein level of Aurora B kinase declined after inhibition of Aurora B kinase activity. Investigation of the underlying mechanism suggested that AZD1152 accelerated the protein turnover of Aurora B by enhancing its ubiquitination. As a consequence of inhibition of Aurora B, p53 levels were increased in tissue culture and murine models. This hinted at a possible direct interaction between p53 and Aurora B. Indeed, it was found that p53 and Aurora B exist in complex and interact directly during interphase and at the centromere in mitosis. Further, Aurora B was shown to phosphorylate p53 at several serine/threonine residues in the DNA binding domain and these events caused downregulation of p53 levels via ubiquitination mediated by Mdm2. Importantly, phosphorylation of threonine 211 was shown to reduce p53’s transcriptional activity while other phosphorylation sites did not. On a functional level, Aurora B was shown to reduce p53’s capacity to mediate apoptosis in response to the DNA damaging agent, cisplatin. These results define a novel mechanism for p53 inactivation by Aurora B and imply that oncogenic hyperactivation or overexpression of Aurora B may compromise p53’s tumor suppressor function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: High grade serous carcinoma whether ovarian, tubal or primary peritoneal, continues to be the most lethal gynecologic malignancy in the USA. Although combination chemotherapy and aggressive surgical resection has improved survival in the past decade the majority of patients still succumb to chemo-resistant disease recurrence. It has recently been reported that amplification of 5q31-5q35.3 is associated with poor prognosis in patients with high grade serous ovarian carcinoma. Although the amplicon contains over 50 genes, it is notable for the presence of several members of the fibroblast growth factor signaling axis. In particular acidic fibroblast growth factor (FGF1) has been demonstrated to be one of the driving genes in mediating the observed prognostic effect of the amplicon in ovarian cancer patients. This study seeks to further validate the prognostic value of fibroblast growth receptor 4 (FGFR4), another candidate gene of the FGF/FGFR axis located in the same amplicon. The emphasis will be delineating the role the FGF1/FGFR4 signaling axis plays in high grade serous ovarian carcinoma; and test the feasibility of targeting the FGF1/FGFR4 axis therapeutically. Materials and Methods: Spearman and Pearson correlation studies on data generated from array CGH and transcriptome profiling analyses on 51 microdissected tumor samples were used to identify genes located on chromosome 5q31-35.3 that showed significant correlation between DNA and mRNA copy numbers. Significant correlation between FGF1 and FGFR4 DNA copy numbers was further validated by qPCR analysis on DNA isolated from 51 microdissected tumor samples. Immunolocalization and quantification of FGFR4 expression were performed on paraffin embedded tissue samples from 183 cases of high-grade serous ovarian carcinoma. The expression was then correlated with clinical data to assess impact on survival. The expression of FGF1 and FGFR4 in vitro was quantified by real-time PCR and western blotting in six high-grade serous ovarian carcinoma cell lines and compared to those in human ovarian surface epithelial cells to identify overexpression. The effect of FGF1 on these cell lines after serum starvation was quantified for in vitro cellular proliferation, migration/invasion, chemoresistance and survival utilizing a combination of commercially available colorimetric, fluorometric and electrical impedance assays. FGFR4 expression was then transiently silenced via siRNA transfection and the effects on response to FGF1, cellular proliferation, and migration were quantified. To identify relevant cellular pathways involved, responsive cell lines were transduced with different transcription response elements using the Cignal-Lenti reporter system and treated with FGF1 with and without transient FGFR4 knock down. This was followed by western blot confirmation for the relevant phosphoproteins. Anti-FGF1 antibodies and FGFR trap proteins were used to attempt inhibition of FGF mediated phenotypic changes and relevant signaling in vitro. Orthotopic intraperitoneal tumors were established in nude mice using serous cell lines that have been previously transfected with luciferase expressing constructs. The mice were then treated with FGFR trap protein. Tumor progression was then followed via bioluminescent imaging. The FGFR4 gene from 52 clinical samples was sequenced to screen for mutations. Results: FGFR4 DNA and mRNA copy numbers were significantly correlated and FGFR4 DNA copy number was significantly correlated with that of FGF1. Survival of patients with high FGFR4 expressing tumors was significantly shorter that those with low expression(median survival 28 vs 55 month p< 0.001) In a multivariate cox regression model FGFR expression significantly increased risk of death (HR 2.1, p<0.001). FGFR4 expression was significantly higher in all cell lines tested compared to HOSE, OVCA432 cell line in particular had very high expression suggesting amplification. FGF1 was also particularly overexpressed in OVCA432. FGF1 significantly increased cell survival after serum deprivation in all cell lines. Transient knock down of FGFR4 caused significant reduction in cell migration and proliferation in vitro and significantly decreased the proliferative effects of FGF1 in vitro. FGFR1, FGFR4 traps and anti-FGF1 antibodies did not show activity in vitro. OVCA432 transfected with the cignal lenti reporter system revealed significant activation of MAPK, NFkB and WNT pathways, western blotting confirmed the results. Reverse phase protein array (RPPA) analysis also showed activation of MAPK, AKT, WNT pathways and down regulation of E Cadherin. FGFR trap protein significantly reduced tumor growth in vivo in an orthotopic mouse model. Conclusions: Overexpression and amplification of several members of the FGF signaling axis present on the amplicon 5q31-35.3 is a negative prognostic indicator in high grade serous ovarian carcinoma and may drive poor survival associated with that amplicon. Activation of The FGF signaling pathway leads to downstream activation of MAPK, AKT, WNT and NFkB pathways leading to a more aggressive cancer phenotype with increased tumor growth, evasion of apoptosis and increased migration and invasion. Inhibition of FGF pathway in vivo via FGFR trap protein leads to significantly decreased tumor growth in an orthotopic mouse model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PAX2 is one of nine PAX genes regulating tissue development and cellular differentiation in embryos. PAX2 promotes cell proliferation, oncogenic transformation, cell-lineage specification, migration, and survival. Unattenuated PAX2 has been found in several cancer types. We therefore sought to elucidate the role of PAX2 in ovarian carcinomas. We found that PAX2 was expressed in low-grade serous, clear cell, endometrioid and mucinous cell ovarian carcinomas, which are relatively chemoresistant compared to high grade serous ovarian carcinomas. Four ovarian cancer cell lines, RMUGL (mucinous), TOV21G (clear cell), MDAH-2774 (endometrioid) and IGROV1 (endometrioid), which express high-levels of PAX2, were used to study the function of PAX2. Lentiviral shRNAs targeting PAX2 were used to knock down PAX2 expression in these cell lines. Cellular proliferation and motility assays subsequently showed that PAX2 stable knockdown had slower growth and migration rates. Microarray gene expression profile analysis further identified genes that were affected by PAX2 including the tumor suppressor gene G0S2. Reverse phase protein array (RPPA) data showed that PAX2 knockdown affected several genes that are involved in apoptosis, which supports the fact that downregulation of PAX2 in PAX2-expressing ovarian cancer cells inhibits cell growth. We hypothesize that this growth inhibition is due to upregulation of the tumor suppressor gene G0S2 via induction of apoptosis. PAX2 represents a potential therapeutic target for chemoresistant PAX2-expressing ovarian carcinomas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissecting the Interaction of p53 and TRIM24 Aundrietta DeVan Duncan Supervisory Professor, Michelle Barton, Ph.D. p53, the “guardian of the genome”, plays an important role in multiple biological processes including cell cycle, angiogenesis, DNA repair and apoptosis. Because it is mutated in over 50% of cancers, p53 has been widely studied in established cancer cell lines. However, little is known about the function of p53 in a normal cell. We focused on characterizing p53 in normal cells and during differentiation. Our lab recently identified a novel binding partner of p53, Tripartite Motif 24 protein (TRIM24). TRIM24 is a member of the TRIM family of proteins, defined by their conserved RING, B-box, and coiled coil domains. Specifically, TRIM24 is a member of the TIF1 subfamily, which is characterized by PHD and Bromo domains in the C-terminus. Between the Coiled-coil and PHD domain is a linker region, 437 amino acids in length. This linker region houses important functions of TRIM24 including it’s site of interaction with nuclear receptors. TRIM24 is an E3-ubiquitin ligase, recently discovered to negatively regulate p53 by targeting it for degradation. Though it is known that Trim24 and p53 interact, it is not known if the interaction is direct and what effect this interaction has on the function of TRIM24 and p53. My study aims to elucidate the specific interaction domains of p53 and TRIM24. To determine the specific domains of p53 required for interaction with TRIM24, we performed co-immuoprecipitation (Co-IP) with recombinant full-length Flag-tagged TRIM24 protein and various deletion constructs of in vitro translated GST-p53, as well as the reverse. I found that TRIM24 binds both the carboxy terminus and DNA binding domain of p53. Furthermore, my results show that binding is altered when post-translational modifications of p53 are present, suggesting that the interaction between p53 and TRIM24 may be affected by these post-translational modifications. To determine the specific domains of TRIM24 required for p53 interaction, we performed GST pull-downs with in vitro translated, Flag-TRIM24 protein constructs and recombinant GST-p53 protein purified from E. coli. We found that the Linker region is sufficient for interaction of p53 and TRIM24. Taken together, these data indicate that the interaction between p53 and TRIM24 does occur in vitro and that interaction may be influenced by post-translational modifications of the proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A patient diagnosed with a glioma, generally, has an average of 14 months year to live after implementation of conventional therapies such as surgery, chemotherapy, and radiation. Glioblastomas are highly lethal because of their aggressive nature and resistance to conventional therapies and apoptosis. Thus other avenues of cell death urgently need to be explored. Autophagy, which is also known as programmed cell death type II, has recently been identified as an alternative mechanism to kill apoptosis- resistant cancer cells. Traditionally, researchers have studied how cells undergo autophagy during viral infection as an immune response mechanism, but recently researchers have discovered how viruses have evolved to manipulate autophagy for their benefit. Extensive studies of viral-induced autophagy provide a rationale to investigate other viruses, such as the adenovirus, which may be developed as part of a therapy against cancers resistant to apoptosis. Despite the present and relatively poor understanding of the mechanisms behind adenoviral-induced autophagy, adenovirus is a promising candidate, because of its ability to efficiently eradicate tumors. A better understanding of how the adenovirus induces autophagy will allow for the development of viruses with increased oncolytic potency. We hypothesized that adenovirus induces autophagy in order to aid in lysis. We found that replication, not infection, was required for adenovirus-mediated autophagy. Loss of function analysis of early genes revealed that, of the early genes tested, no single gene was sufficient to induce autophagy alone. Examination of cellular pathways for their role in autophagy during adenovirus infection revealed a function for the eIF2α pathway and more specifically the GCN2 kinase. Cells lacking GCN2 are more resistant to adenovirus-mediated autophagy in vitro; in vivo we also found these cells fail to undergo autophagy, but display more cell death. We believe that autophagy is a protective mechanism the cell employs during adenoviral infection, and in the in vivo environment, cells cannot recover from virus infection and are more susceptible to death. Congruently, infected cells deficient for autophagy through deletion of ATG5 are not able undergo productive cell lysis, providing evidence that the destruction of the cytoplasm and cell membrane through autophagy is crucial to the viral life cycle. This project is the first to describe a gene, other than a named autophagy gene, to be required for adenovirus- mediated autophagy. It is also the first to examine autophagic cell death as a means to aid in viral-induced cell lysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A patient diagnosed with a glioma, generally, has an average of 14 months year to live after implementation of conventional therapies such as surgery, chemotherapy, and radiation. Glioblastomas are highly lethal because of their aggressive nature and resistance to conventional therapies and apoptosis. Thus other avenues of cell death urgently need to be explored. Autophagy, which is also known as programmed cell death type II, has recently been identified as an alternative mechanism to kill apoptosis- resistant cancer cells. Traditionally, researchers have studied how cells undergo autophagy during viral infection as an immune response mechanism, but recently researchers have discovered how viruses have evolved to manipulate autophagy for their benefit. Extensive studies of viral-induced autophagy provide a rationale to investigate other viruses, such as the adenovirus, which may be developed as part of a therapy against cancers resistant to apoptosis. Despite the present and relatively poor understanding of the mechanisms behind adenoviral-induced autophagy, adenovirus is a promising candidate, because of its ability to efficiently eradicate tumors. A better understanding of how the adenovirus induces autophagy will allow for the development of viruses with increased oncolytic potency. We hypothesized that adenovirus induces autophagy in order to aid in lysis. We found that replication, not infection, was required for adenovirus-mediated autophagy. Loss of function analysis of early genes revealed that, of the early genes tested, no single gene was sufficient to induce autophagy alone. Examination of cellular pathways for their role in autophagy during adenovirus infection revealed a function for the eIF2α pathway and more specifically the GCN2 kinase. Cells lacking GCN2 are more resistant to adenovirus-mediated autophagy in vitro; in vivo we also found these cells fail to undergo autophagy, but display more cell death. We believe that autophagy is a protective mechanism the cell employs during adenoviral infection, and in the in vivo environment, cells cannot recover from virus infection and are more susceptible to death. Congruently, infected cells deficient for autophagy through deletion of ATG5 are not able undergo productive cell lysis, providing evidence that the destruction of the cytoplasm and cell membrane through autophagy is crucial to the viral life cycle. This project is the first to describe a gene, other than a named autophagy gene, to be required for adenovirus- mediated autophagy. It is also the first to examine autophagic cell death as a means to aid in viral-induced cell lysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liposomes, also known as nontoxic, biodegradable, and non-immunogenic therapeutic delivery vehicles, have been proposed as a carrier for drugs and antitumor agents in cancer chemotherapy. Echogenic liposomes (ELIP) have the potential to entrap air or bioactive gas to enhance acoustic reflectivity in ultrasound and are used as a contrast agent. The innovative part of this study is based on a novel concept to encapsulate nitric oxide (NO) gas into ELIP, deliver it to breast cancer cells, and control its release via direct ultrasound exposure. Studies on the effect of NO in tumor biology have shown that a high levels of NO (> 300 nM) leads to cytostasis or apoptosis by decreasing the translation of several cell cycle proteins and stimulating cancer cell death by activating the p53 pathway. The central hypothesis is that NO gas can be packaged and delivered through a delivery methodology to breast cancer cells to facilitate tumor regression with minimal systemic toxicity. The primary goal of this thesis is to develop an echogenic liposomal solution that has the ability to encapsulate NO, to release NO locally upon ultrasound exposure, and to induce breast cancer cell death. NO-containing echogenic liposomes (NO-ELIP) were prepared by the freezing-under-pressure method previously developed in our laboratory. It was necessary to evaluate stability of NO-ELIP and release of NO from NO-ELIP by measuring echogenicity using intravascular ultrasound images. Breast cancer cell lines, MDA-MB-231 and MDA-MB-468, were selected to investigate the cytotoxic effects of NO liberated from NO-ELIP and their response to NO concentration. Ultrasound-triggered NO release from NO-ELIP using ultrasound activation was studied. It was demonstrated that NO-ELIP remained stable for 5 hours in bovine serum albumin. Delivery of NO using NO-ELIP induced cytotoxicity and programmed cell death of MDA-MB-231 and MDA-MB-468 after 5 hours of incubation. Enhancement of the NO-ELIP effect for therapeutic application was observed with ultrasound activation. This work demonstrates that NO-ELIP can incorporate and deliver NO to breast cancer cells providing increased NO stability and ultrasound-controlled NO release. Improved therapeutic effect with the use of NO-ELIP is expected to be found for breast cancer treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phosphatidylinositol 3-kinase (PI3K) pathway, through its major effector node AKT, is critical for the promotion of cell growth, division, motility and apoptosis evasion. This signaling axis is therefore commonly targeted in the form of mutations and amplifications in a myriad of malignancies. Glycogen synthase kinase 3 (GSK3) was first discovered as the kinase responsible for phosphorylating and inhibiting the activity of glycogen synthase, ultimately antagonizing the storage of glucose as glycogen. Its activity counteracts the effects of insulin in glucose metabolism and AKT has long been recognized as one of the key molecules capable of phosphorylating GSK3 and inhibiting its activity. However, here we demonstrate that GSK3 is required for optimal phosphorylation and activation of AKT in different malignant cell lines, and that this effect is independent of the type of growth factor stimulation and can happen even in basal states. Both GSK3 alpha and GSK3 beta isoforms are necessary for AKT to become fully active, displaying a redundant role in the setting. We also demonstrate that this effect of GSK3 on AKT phosphorylation and full activation is dependent on its kinase activity, since highly specific inhibitors targeting GSK3 catalytic activity also promote a reduction in phosphorylated AKT. Analysis of reverse phase protein array screening of MDA-MB-231 breast cancer cells treated with RNA interference targeting GSK3 unexpectedly revealed an increase in levels of phosphorylated MAPK14 (p38). Treatment with the selective p38 inhibitor SB 202190 rescued AKT activation in that cell line, corroborating the importance of unbiased proteomic analysis in exposing cross-talks between signaling networks and demonstrating a critical role for p38 in the regulation of AKT phosphorylation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pancreatic cancer is the fourth leading cause of cancer-related mortality in the United States and the fifth leading cause of cancer-related mortality worldwide. Pancreatic cancer is a big challenge in large due to the lack of early symptoms. In addition, drug resistance is a major obstacle to the success of chemotherapy in pancreatic cancer. The underlying mechanism of drug resistance in human pancreatic cancers is not well understood. Better understanding of the mechanism of molecular pathways in human pancreatic cancers can help to identify the novel therapeutic target candidates, and develop the new preventive and clinic strategies to improve patient survival. We discovered that TAK1 is overexpressed in pancreatic cancer cell lines and patient tumor tissues. We demonstrated that the elevated activity of TAK1 is caused by its binding partner TAB1. Knocking down of TAK1 in pancreatic cancer cells with RNAi technique resulted in cell apoptosis and significantly reduces the size of tumors in mice and made a chemotherapy drug more potent. Targeting the kinase activity of TAK1 with the selective inhibitor LY2610956 strongly synergized in vitro with the antitumor activity of gemcitabine, oxaliplatin, or irinotecan on pancreatic cancer cells. These findings highlighted that TAK1 could be a potential therapeutic target for pancreatic cancer. We also demonstrated that TAK activity is regulated by its binding protein TAB1. We defined a minimum TAB1 sequence which is required and sufficient for TAK1 kinase activity. We created a recombinant TAK1-TAB1 C68 fusion form which has highly kinase activity. This active form could is used for screening TAK1 inhibitors. In addition, several posttranslational modifications were identified in our study. The acetylation of lysine 158 on TAK1 is required for kinase activity. This site is conserved throughout all of kinase. Our findings may reveal a new mechanism by which kinase activity is regulated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wilms tumor (WT) is a childhood tumor of the kidney and a productive model for understanding the role of genetic alteration and interactions in tumorigenesis. The Wilms tumor gene 1 (WT1) is a transcriptional factor and one of the few genes known to have genetic alterations in WT and has been shown be inactivated in 20% of WTs. However, the mechanisms of how WT1 mutations lead to Wilms tumorigenesis and its influence on downstream genes are unknown. Since it has been established that WT1 is a transcriptional regulator, it has been hypothesized that the loss of WT1 leads to the dysregulation of downstream genes, in turn result in the formation of WTs. To identify the dysregulated downstream genes following WT1 mutations, an Affymetrix GeneChip Human Genome Array was previously conducted to assess the differentially expressed genes in the WT1-wildtype human and WT1-mutant human WTs. Approximately 700 genes were identified as being significantly dysregulated. These genes were further prioritized based on their statistical significance, fold change, chromosomal region, spatial pattern of gene expression and known or putative cellular functions. Mesenchyme homeobox 2 (MEOX2) was one of the most significantly upregulated genes in WT1-mutant WT. MEOX2 is known to play a role in cell proliferation, apoptosis, and differentiation. In addition to its biological roles, it is expressed during early kidney development in the condensed mesenchyme similar to WT1. Furthermore, the use of the Match® web-based tool from the BIOBASE Biological Data base identified a significant predicted WT1 binding site within the first intron of MEOX2. The similarity in spatial gene expression in the developing kidney and the significant predicted WT1 binding site found in the first intron of MEOX2 lead to the development of my hypothesis that MEOX2 is upregulated via a WT1-dependent manner. Here as a part of my master’s work, I have validated the Affymetrix GeneChip Human Genome Array data using an independent set of Wilms tumors. MEOX2 remained upregulated in the mutant WT1 Wilms tumor by 41-fold. Wt1 and Meox2 gene expression were assessed in murine newborn kidney; both Wt1 and Meox2 were expressed in the condensed, undifferentiated metanephric mesenchyme. I have shown that the in vivo ablation of Wt1 during embryonic development at embryonic day (E) 13.5 resulted in the slight increase of Meox2 gene expression by two fold. In order to functionally demonstrate the effect of the loss of Wt1 on Meox2 gene expression in undifferentiated metanephric mesenchyme, I have generated a kidney mesenchymal cell line to genetically ablate Wt1 in vitro by adenoviral infection. The ablation of Wt1 in the kidney mesenchymal cell line resulted in the upregulation of Meox2 by 61-fold. Moreover, the upregulation of Meox2 resulted in the significant induction of p21 and Itgb5. In addition to the dysregulation of these genes the ablation of Wt1 in the kidney mesenchymal cells resulted in decrease in cell growth and loss of cellular adherence. However, it is uncertain whether the upregulation of Meox2 caused this particular cellular phenotype. Overall, I have demonstrated that the upregulation of Meox2 is Wt1-dependent during early kidney development.