24 resultados para Anti-Asthmatic Agents


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Linezolid, which targets the ribosome, is a new synthetic antibiotic that is used for treatment of infections caused by Gram-positive pathogens. Clinical resistance to linezolid, so far, has been developing only slowly and has involved exclusively target site mutations. We have discovered that linezolid resistance in a methicillin-resistant Staphylococcus aureus hospital strain from Colombia is determined by the presence of the cfr gene whose product, Cfr methyltransferase, modifies adenosine at position 2503 in 23S rRNA in the large ribosomal subunit. The molecular model of the linezolid-ribosome complex reveals localization of A2503 within the drug binding site. The natural function of cfr likely involves protection against natural antibiotics whose site of action overlaps that of linezolid. In the chromosome of the clinical strain, cfr is linked to ermB, a gene responsible for dimethylation of A2058 in 23S rRNA. Coexpression of these two genes confers resistance to all the clinically relevant antibiotics that target the large ribosomal subunit. The association of the ermB/cfr operon with transposon and plasmid genetic elements indicates its possible mobile nature. This is the first example of clinical resistance to the synthetic drug linezolid which involves a natural resistance gene with the capability of disseminating among Gram-positive pathogenic strains.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ceftobiprole (BAL9141) is an investigational cephalosporin with broad in vitro activity against gram-positive cocci, including enterococci. Ceftobiprole MICs were determined for 93 isolates of Enterococcus faecalis (including 16 beta-lactamase [Bla] producers and 17 vancomycin-resistant isolates) by an agar dilution method following the Clinical and Laboratory Standards Institute recommendations. Ceftobiprole MICs were also determined with a high inoculum concentration (10(7) CFU/ml) for a subset of five Bla producers belonging to different previously characterized clones by a broth dilution method. Time-kill and synergism studies (with either streptomycin or gentamicin) were performed with two beta-lactamase-producing isolates (TX0630 and TX5070) and two vancomycin-resistant isolates (TX2484 [VanB] and TX2784 [VanA]). The MICs of ceftobiprole for 50 and 90% of the isolates tested were 0.25 and 1 microg/ml, respectively. All Bla producers and vancomycin-resistant isolates were inhibited by concentrations of

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Inflammation is implicated in the development of cancer related fatigue (CRF). However there is limited literature on the mediators of inflammation (namely), cytokines and their receptors, associated with clinically significant fatigue and response to treatment. Methods: We reviewed 37 advanced cancer patients with fatigue (≥4/10), who participated in two Randomized Controlled Trials, of anti-inflammatory agents (Thalidomide and Dexamethasone) for CRF. Responders showed improvement in FACIT-F subscale at the end of study (Day 15). Baseline patient characteristics and symptoms were assessed by FACIT-F, ESAS; serum cytokines [IL-1β and receptor antagonist (IL-1RA), IL-6, IL-6R, TNF-α and sTNF-R1 and R2, IL-8, IL-10, IL-17] levels measured by Luminex. Data were analyzed using principal component analysis (PCA) [reporting cumulative variance (variance) for the first four components] to determine their association with fatigue and response to treatment. Results: Females were 54%. Mean (SD) was as follows for age, 61(14); baseline FACIT (F) scores, 21.4(8.6); ESAS Fatigue item, 6.5(1.9); and FACIT-F change, 6.4(9.7); ESAS (fatigue) change, -2 (2.41). Baseline median in pg/mL for IL-6, TNF-α, IL-1β were 31.9; 18.9; 0.55, respectively. Change in IL-6 negatively correlated with change in FACIT-F scores (p=0.02). Baseline CRF (FACIT-F score) was associated with IL-6, IL-6R and IL-17, Variance = 78% whereas IL-10, IL-1RA, TNF-α and IL-1β were associated with improvement of CRF, Variance=74%. Conversely, IL-6 and IL-8 were associated with no improvement or worsening of CRF, Variance= 93%. Conclusions: Change in IL-6 negatively correlated with change in FACIT-F scores. IL-6, IL-6R and IL-17 are associated with CRF while IL-6 and IL-8 were associated with no improvement of CRF. Further studies are warranted confirm our findings.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Targeting the proteasome with the sole FDA approved proteasome inhibitor (PI), bortezomib, has been fruitful in specific cancers. Its success has generated an interest in next-generation PIs that might have a therapeutic advantage in cancers, such as leukemia, where bortezomib monotherapy was less effective. This study focuses on a novel, clinically relevant PI, NPI-0052. Experiments show that NPI-0052 targets chymotrypsin- and caspase-like activities more potently than the trypsin-like activity in leukemia cells. NPI-0052 induced apoptosis, as determined by caspase-3 activation and DNA fragmentation. Using caspase inhibitors and caspase-8 (I9.2) or FADD (I2.1) deficient cells revealed that caspase-8 was essential for NPI-0052-induced apoptosis. NPI-0052 killed cells via a caspase-8-tBid-mitochondrial pathway, relying on caspase-8, whereas bortezomib relies on several caspases. NPI-0052 increased reactive oxygen species (ROS) levels, which contributed towards cytotoxicity since an antioxidant conferred protection. To improve the clinical efficacy of PIs, NPI-0052 was combined with epigenetic anti-cancer agents, histone deacetylase inhibitors (HDACi). NPI-0052 with MS-275 or vorinostat (FDA approved HDACi), synergistically induced apoptosis more effectively than an HDACi/bortezomib regimen in Jurkat cells. Caspase-8 and ROS contributed towards NPI-0052/HDACi cytotoxicity and caspase-8 mediated superoxide production by NPI-0052 or NPI-0052/HDACi. The proximal targets of these agents: proteasome activity and histone acetylation were examined to determine if they contributed towards synergistic effects. HDACi targeted proteasomal β subunits and corresponding catalytic activities responsible for degrading proteins. Immunoblotting showed increases in histone-H3 expression and its acetylation with NPI-0052 or NPI-0052/HDACi in Jurkat and primary cells. Importantly, the hyper-acetylation by NPI-0052 was not detected with bortezomib, suggesting that this effect may be unique to NPI-0052. An antioxidant attenuated histone-H3 expression and acetylation induced by NPI-0052 alone or with HDACi. Furthermore, the hyper-acetylation by NPI-0052 relied on caspase-8. These novel results show that a PI is eliciting classical epigenetic alterations, demonstrated by hyper-acetylation of histone-H3. This alteration was oxidant and caspase-8 dependent. Overall, results reveal that caspase-8 mediates many effects induced by NPI-0052. Data show overlapping activities by NPI-0052 and HDACi which are contributing, along with caspase-8 activation and oxidative stress, to cytotoxic interactions in leukemia cells, reinforcing the potential clinical utility of combining these two compounds. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Imatinib mesylate, a selective inhibitor of KIT, PDGFR, and Abl kinases, has shown significant success as a therapy for patients with advanced gastrointestinal stromal tumors (GISTs). However, the underlying mechanisms of imatinib-induced cytotoxicity are not well understood. Using gene expression profiling and real-time PCR for target validation, we identified insulin-like growth factor binding protein-3 (IGFBP3) to be to be up-regulated after imatinib treatment in imatinib-sensitive GISTs. IGFBP3 is a multifunctional protein that regulates cell proliferation and survival and mediates the effects of a variety of anti-cancer agents through IGF-dependent and IGF-independent mechanisms. Therefore, we hypothesized that IGFBP3 mediates GIST cell response to imatinib. To test this hypothesis, we manipulated IGFBP3 protein levels in two KIT mutant, imatinib-sensitive GIST cell lines and assessed the resultant changes in cell viability, survival, and imatinib sensitivity. In GIST882 cells, endogenous IGFBP3 was required for cell viability. However, inhibiting imatinib-induced IGFBP3 up-regulation by RNA interference or neutralization resulted in reduced drug sensitivity, suggesting that IGFBP3 sensitizes GIST882 cells to imatinib. GIST-T1 cells, on the other hand, had no detectable levels of endogenous IGFBP3, nor did imatinib induce IGFBP3 up-regulation, in contrast to our previous findings. IGFBP3 overexpression in GIST-T1 cells reduced viability but did not induce cell death; rather, the cells became polyploid through a mechanism that may involve attenuated Cdc20 expression and securin degradation. Moreover, IGFBP3 overexpression resulted in a loss of KIT activation and decreased levels of mature KIT. Consistent with this, GIST-T1 cells overexpressing IGFBP3 were less sensitive to imatinib. Furthermore, as neither GIST882 cells nor GIST-T1 cells expressed detectable levels of IGF-1R, IGFBP3 is likely not exerting its effects by modulating IGF signaling through IGF-1R or IR/IGF-1R hybrid receptors in these cell lines. Collectively, these findings demonstrate that IGFBP3 has cell-dependent effects and would, therefore, not be an ideal marker for identifying imatinib response in GISTs. Nevertheless, our results provide preliminary evidence that IGFBP3 may have some therapeutic benefits in GISTs. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Use of Echogenic Immunoliposomes for Delivery of both Drug and Stem Cells for Inhibition of Atheroma Progression By Ali K. Naji B.S. Advisor: Dr. Melvin E. Klegerman PhD Background and significance: Echogenic liposomes can be used as drug and cell delivery vehicles that reduce atheroma progression. Vascular endothelial growth factor (VEGF) is a signal protein that induces vasculogenesis and angiogenesis. VEGF functionally induces migration and proliferation of endothelial cells and increases intracellular vascular permeability. VEGF activates angiogenic transduction factors through VEGF tyrosine kinase domains in high-affinity receptors of endothelial cells. Bevacizumab is a humanized monoclonal antibody specific for VEGF-A which was developed as an anti-tumor agent. Often, anti-VEGF agents result in regression of existing microvessels, inhibiting tumor growth and possibly causing tumor shrinkage with time. During atheroma progression neovasculation in the arterial adventitia is mediated by VEGF. Therefore, bevacizumab may be effective in inhibiting atheroma progression. Stem cells show an ability to inhibit atheroma progression. We have previously demonstrated that monocyte derived CD-34+ stem cells that can be delivered to atheroma by bifunctional-ELIP ( BF-ELIP) targeted to Intercellular Adhesion Molecule-1 (ICAM-1) and CD-34. Adhesion molecules such as ICAM-1 and vascular cell adhesion molecule-1 (VCAM-1) are expressed by endothelial cells under inflammatory conditions. Ultrasound enhanced liposomal targeting provides a method for stem cell delivery into atheroma and encapsulated drug release. This project is designed to examine the ability of echogenic liposomes to deliver bevacizumab and stem cells to inhibit atheroma progression and neovasculation with and without ultrasound in vitro and optimize the ultrasound parameters for delivery of bevacizumab and stem cells to atheroma. V Hypotheses: Previous studies showed that endothelial cell VEGF expression may relate to atherosclerosis progression and atheroma formation in the cardiovascular system. Bevacizumab-loaded ELIP will inhibit endothelial cell VEGF expression in vitro. Bevacizumab activity can be enhanced by pulsed Doppler ultrasound treatment of BEV-ELIP. I will also test the hypothesis that the transwell culture system can serve as an in vitro model for study of US-enhanced targeted delivery of stem cells to atheroma. Monocyte preparations will serve as a source of CD34+ stem cells. Specific Aims: Induce VEGF expression using PKA and PKC activation factors to endothelial cell cultures and use western blot and ELISA techniques to detect the expressed VEGF.  Characterize the relationship between endothelial cell proliferation and VEGF expression to develop a specific EC culture based system to demonstrate BEV-ELIP activity as an anti-VEGF agent. Design a cell-based assay for in vitro assessment of ultrasound-enhanced bevacizumab release from echogenic liposomes.  Demonstrate ultrasound delivery enhancement of stem cells by applying different types of liposomes on transwell EC culture using fluorescently labeled monocytes and detect the effect on migration and attachment rate of these echogenic liposomes with and without ultrasound in vitro.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: For most cytotoxic and biologic anti-cancer agents, the response rate of the drug is commonly assumed to be non-decreasing with an increasing dose. However, an increasing dose does not always result in an appreciable increase in the response rate. This may especially be true at high doses for a biologic agent. Therefore, in a phase II trial the investigators may be interested in testing the anti-tumor activity of a drug at more than one (often two) doses, instead of only at the maximum tolerated dose (MTD). This way, when the lower dose appears equally effective, this dose can be recommended for further confirmatory testing in a phase III trial under potential long-term toxicity and cost considerations. A common approach to designing such a phase II trial has been to use an independent (e.g., Simon's two-stage) design at each dose ignoring the prior knowledge about the ordering of the response probabilities at the different doses. However, failure to account for this ordering constraint in estimating the response probabilities may result in an inefficient design. In this dissertation, we developed extensions of Simon's optimal and minimax two-stage designs, including both frequentist and Bayesian methods, for two doses that assume ordered response rates between doses. ^ Methods: Optimal and minimax two-stage designs are proposed for phase II clinical trials in settings where the true response rates at two dose levels are ordered. We borrow strength between doses using isotonic regression and control the joint and/or marginal error probabilities. Bayesian two-stage designs are also proposed under a stochastic ordering constraint. ^ Results: Compared to Simon's designs, when controlling the power and type I error at the same levels, the proposed frequentist and Bayesian designs reduce the maximum and expected sample sizes. Most of the proposed designs also increase the probability of early termination when the true response rates are poor. ^ Conclusion: Proposed frequentist and Bayesian designs are superior to Simon's designs in terms of operating characteristics (expected sample size and probability of early termination, when the response rates are poor) Thus, the proposed designs lead to more cost-efficient and ethical trials, and may consequently improve and expedite the drug discovery process. The proposed designs may be extended to designs of multiple group trials and drug combination trials.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objectives of this research were (1) to study the effect of contact pressure, compression time, and liquid (moisture content of the fabric) on the transfer by sliding contact of non-fixed surface contamination to protective clothing constructed from uncoated, woven fabrics, (2) to study the effect of contact pressure, compression time, and liquid content on the subsequent penetration through the fabric, and (3) to determine if varying the type of contaminant changes the effect of contact pressure, compression time, and liquid content on the transfer by sliding contact and penetration of non-fixed surface contamination. ^ It was found that the combined influence of the liquid (moisture content of the fabric), load (contact pressure), compression time, and their interactions significantly influenced the penetration of all three test agents, sucrose- 14C, triolein-3H, and starch-14C through 100% cotton fabric. The combined influence of the statistically significant main effects and their interactions increased the penetration of triolein- 3H by 32,548%, sucrose-14C by 7,006%, and starch- 14C by 1,900%. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to design, synthesize and develop novel transporter targeting agents for image-guided therapy and drug delivery. Two novel agents, N4-guanine (N4amG) and glycopeptide (GP) were synthesized for tumor cell proliferation assessment and cancer theranostic platform, respectively. N4amG and GP were synthesized and radiolabeled with 99mTc and 68Ga. The chemical and radiochemical purities as well as radiochemical stabilities of radiolabeled N4amG and GP were tested. In vitro stability assessment showed both 99mTc-N4amG and 99mTc-GP were stable up to 6 hours, whereas 68Ga-GP was stable up to 2 hours. Cell culture studies confirmed radiolabeled N4amG and GP could penetrate the cell membrane through nucleoside transporters and amino acid transporters, respectively. Up to 40% of intracellular 99mTc-N4amG and 99mTc-GP was found within cell nucleus following 2 hours of incubation. Flow cytometry analysis revealed 99mTc-N4amG was a cell cycle S phase-specific agent. There was a significant difference of the uptake of 99mTc-GP between pre- and post- paclitaxel-treated cells, which suggests that 99mTc-GP may be useful in chemotherapy treatment monitoring. Moreover, radiolabeled N4amG and GP were tested in vivo using tumor-bearing animal models. 99mTc-N4amG showed an increase in tumor-to-muscle count density ratios up to 5 at 4 hour imaging. Both 99mTc-labeled agents showed decreased tumor uptake after paclitaxel treatment. Immunohistochemistry analysis demonstrated that the uptake of 99mTc-N4amG was correlated with Ki-67 expression. Both 99mTc-N4amG and 99mTc-GP could differentiate between tumor and inflammation in animal studies. Furthermore, 68Ga-GP was compared to 18F-FDG in rabbit PET imaging studies. 68Ga-GP had lower tumor standardized uptake values (SUV), but similar uptake dynamics, and different biodistribution compared with 18F-FDG. Finally, to demonstrate that GP can be a potential drug carrier for cancer theranostics, several drugs, including doxorubicin, were selected to be conjugated to GP. Imaging studies demonstrated that tumor uptake of GP-drug conjugates was increased as a function of time. GP-doxorubicin (GP-DOX) showed a slow-release pattern in in vitro cytotoxicity assay and exhibited anti-cancer efficacy with reduced toxicity in in vivo tumor growth delay study. In conclusion, both N4amG and GP are transporter-based targeting agents. Radiolabeled N4amG can be used for tumor cell proliferation assessment. GP is a potential agent for image-guided therapy and drug delivery.