32 resultados para 4D Dosimetry


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proton therapy has become an increasingly more common method of radiation therapy, with the dose sparing to distal tissue making it an appealing option, particularly for treatment of brain tumors. This study sought to develop a head phantom for the Radiological Physics Center (RPC), the first to be used for credentialing of institutions wishing to participate in clinical trials involving brain tumor treatment of proton therapy. It was hypothesized that a head phantom could be created for the evaluation of proton therapy treatment procedures (treatment simulation, planning, and delivery) to assure agreement between the measured dose and calculated dose within ±5%/3mm with a reproducibility of ±3%. The relative stopping power (RSP) and Hounsfield Units (HU) were measured for potential phantom materials and a human skull was cast in tissue-equivalent Alderson material (RLSP 1.00, HU 16) with anatomical airways and a cylindrical hole for imaging and dosimetry inserts drilled into the phantom material. Two treatment plans, proton passive scattering and proton spot scanning, were created. Thermoluminescent dosimeters (TLDs) and film were loaded into the phantom dosimetry insert. Each treatment plan was delivered three separate times. Each treatment plan passed our 5%/3mm criteria, with a reproducibility of ±3%. The hypothesis was accepted and the phantom was found to be suitable for remote audits of proton therapy treatment facilities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The MDAH pencil-beam algorithm developed by Hogstrom et al (1981) has been widely used in clinics for electron beam dose calculations for radiotherapy treatment planning. The primary objective of this research was to address several deficiencies of that algorithm and to develop an enhanced version. Two enhancements have been incorporated into the pencil-beam algorithm; one models fluence rather than planar fluence, and the other models the bremsstrahlung dose using measured beam data. Comparisons of the resulting calculated dose distributions with measured dose distributions for several test phantoms have been made. From these results it is concluded (1) that the fluence-based algorithm is more accurate to use for the dose calculation in an inhomogeneous slab phantom, and (2) the fluence-based calculation provides only a limited improvement to the accuracy the calculated dose in the region just downstream of the lateral edge of an inhomogeneity. The source of the latter inaccuracy is believed primarily due to assumptions made in the pencil beam's modeling of the complex phantom or patient geometry.^ A pencil-beam redefinition model was developed for the calculation of electron beam dose distributions in three dimensions. The primary aim of this redefinition model was to solve the dosimetry problem presented by deep inhomogeneities, which was the major deficiency of the enhanced version of the MDAH pencil-beam algorithm. The pencil-beam redefinition model is based on the theory of electron transport by redefining the pencil beams at each layer of the medium. The unique approach of this model is that all the physical parameters of a given pencil beam are characterized for multiple energy bins. Comparisons of the calculated dose distributions with measured dose distributions for a homogeneous water phantom and for phantoms with deep inhomogeneities have been made. From these results it is concluded that the redefinition algorithm is superior to the conventional, fluence-based, pencil-beam algorithm, especially in predicting the dose distribution downstream of a local inhomogeneity. The accuracy of this algorithm appears sufficient for clinical use, and the algorithm is structured for future expansion of the physical model if required for site specific treatment planning problems. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a phase I clinical trial, six multiple myeloma patients, who were non-responsive to conventional therapy and were scheduled for bone marrow transplantation, received Holmium-166 ($\sp{166}$Ho) labeled to a bone seeking agent, DOTMP (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetramethylene-phosphonic acid), for the purpose of bone marrow ablation. The specific aims of my research within this protocol were to evaluate the toxicity and efficacy of $\sp{166}$Ho DOTMP by quantifying the in vivo pharmacokinetics and radiation dosimetry, and by correlating these results to the biologic response observed. The reproducibility of pharmacokinetics from multiple injections of $\sp{166}$Ho DOTMP administered to these myeloma patients was demonstrated from both blood and whole body retention. The skeletal concentration of $\sp{166}$Ho DOTMP was heterogenous in all six patients: high in the ribs, pelvis, and lumbar vertebrae regions, and relatively low in the femurs, arms, and head.^ A novel technique was developed to calculate the radiation dose to the bone marrow in each skeletal ROI, and was applied to all six $\sp{166}$Ho DOTMP patients. Radiation dose estimates for the bone marrow calculated using the standard MIRD "S" factors were compared with the average values derived from the heterogenous distribution of activity in the skeleton (i.e., the regional technique). The results from the two techniques were significantly different; the average of the dose estimates from the regional technique were typically 30% greater. Furthermore, the regional technique provided a range of radiation doses for the entire marrow volume, while the MIRD "S" factors only provided a single value. Dose volume histogram analysis of data from the regional technique indicated a range of dose estimates that varied by a factor of 10 between the high dose and low dose regions. Finally, the observed clinical response of cells and abnormal proteins measured in bone marrow aspirates and peripheral blood samples were compared with radiation dose estimates for the bone marrow calculated from the standard and regional technique. The results showed the regional technique values correlated more closely to several clinical response parameters. (Abstract shortened by UMI.) ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bone marrow ablation, i.e., the complete sterilization of the active bone marrow, followed by bone marrow transplantation (BMT) is a comment treatment of hematological malignancies. The use of targeted bone-seeking radiopharmaceuticals to selectively deliver radiation to the adjacent bone marrow cavities while sparing normal tissues is a promising technique. Current radiopharmaceutical treatment planning methods do not properly compensate for the patient-specific variable distribution of radioactive material within the skeleton. To improve the current method of internal dosimetry, novel methods for measuring the radiopharmaceutical distribution within the skeleton were developed. 99mTc-MDP was proven as an adequate surrogate for measuring 166Ho-DOTMP skeletal uptake and biodistribution, allowing these measures to be obtained faster, safer, and with higher spatial resolution. This translates directly into better measurements of the radiation dose distribution within the bone marrow. The resulting bone marrow dose-volume histograms allow prediction of the patient disease response where conventional organ scale dosimetry failed. They indicate that complete remission is only achieved when greater than 90% of the bone marrow receives at least 30 Gy. ^ Comprehensive treatment planning requires combining target and non-target organ dosimetry. Organs in the urinary tract were of special concern. The kidney dose is primarily dependent upon the mean transit time of 166 Ho-DOTMP through the kidney. Deconvolution analysis of renograms predicted a mean transit time of 2.6 minutes for 166Ho-DOTMP. The radiation dose to the urinary bladder wall is dependent upon numerous factors including patient hydration and void schedule. For beta-emitting isotopes such as 166Ho, reduction of the bladder wall dose is best accomplished through good patient hydration and ensuring a partially full bladder at the time of injection. Encouraging the patient to void frequently, or catheterizing the patient without irrigation, will not significantly reduce the bladder wall dose. ^ The results from this work will produce the most advanced treatment planning methodology for bone marrow ablation therapy using radioisotopes currently available. Treatments can be tailored specifically for each patient, including the addition of concomitant total body irradiation for patients with unfavorable dose distributions, to deliver a desired patient disease response, while minimizing the dose or toxicity to non-target organs. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intracavitary brachytherapy (ICB) combined with external beam irradiation for treatment of cervical cancer is highly successful in achieving local control. The M.D. Anderson Cancer Center employs Fletcher Suit Delclos (FSD) applicators. FSD applicators contain shields to limit dose to critical structures. Dosimetric evaluation of ICB implants is limited to assessing dose at reference points. These points serve as surrogates for treatment intensity and critical structure dose. Several studies have mentioned that the ICRU38 reference points inadequately characterize the dose distribution. Also, the ovoid shields are rarely considered in dosimetry. ^ The goal of this dissertation was to ascertain the influence of the ovoid shields on patient dose distributions. Monte Carlo dosimetry (MCD) was applied to patient computed tomography(CT) scans. These data were analyzed to determine the effect of the shields on dose to standard reference points and the bladder and rectum. The hypothesis of this work is that the ICRU38 bladder and rectal points computed conventionally are not clinically acceptable surrogates for the maximum dose points as determined by MCD. ^ MCD was applied to the tandem and ovoids. The FSD ovoids and tandem were modeled in a single input file that allowed dose to be calculated for any patient. Dose difference surface histograms(DDSH) were computed for the bladder and rectum. Reference point doses were compared between shielded and unshielded ovoids, and a commercial treatment planning system. ^ The results of this work showed the tandem tip screw caused a 33% reduction in dose. The ovoid shields reduced the dose by a maximum of 48.9%. DDSHs revealed on average 5% of the bladder surface area was spared 53 cGy and 5% of the rectal surface area was spared 195 cGy. The ovoid shields on average reduced the dose by 18% for the bladder point and 25% for the rectal point. The Student's t-test revealed the ICRU38 bladder and rectal points do not predict the maximum dose for these organs. ^ It is concluded that modeling the tandem and ovoid internal structures is necessary for accurate dose calculations, the bladder shielding segments may not be necessary, and that the ICRU38 bladder point is irrelevant. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Maternal ingestion of high concentrations of radon-222 (Rn-222) in drinking during pregnancy may pose a significant radiation hazard to the developing embryo. The effects of ionizing radiation to the embryo and fetus have been the subject of research, analyses, and the development of a number of radiation dosimetric models for a variety of radionuclides. Currently, essentially all of the biokinetic and dosimetric models that have been developed by national and international radiation protection agencies and organizations recommend calculating the dose to the mother's uterus as a surrogate for estimating the dose to the embryo. Heretofore, the traditional radiation dosimetry models have neither considered the embryo a distinct and rapidly developing entity, the fact that it is implanted in the endometrial layer of the uterus, nor the physiological interchanges that take place between maternal and embryonic cells following the implantation of the blastocyst in the endometrium. The purpose of this research was to propose a new approach and mathematical model for calculating the absorbed radiation dose to the embryo by utilizing a semiclassical treatment of alpha particle decay and subsequent scattering of energy deposition in uterine and embryonic tissue. The new approach and model were compared and contrasted with the currently recommended biokinetic and dosimetric models for estimating the radiation dose to the embryo. The results obtained in this research demonstrate that the estimated absorbed dose for an embryo implanted in the endometrial layer of the uterus during the fifth week of embryonic development is greater than the estimated absorbed dose for an embryo implanted in the uterine muscle on the last day of the eighth week of gestation. This research provides compelling evidence that the recommended methodologies and dosimetric models of the Nuclear Regulatory Commission and International Commission on Radiological Protection employed for calculating the radiation dose to the embryo from maternal intakes of radionuclides, including maternal ingestion of Rn-222 in drinking water would result in an underestimation of dose. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A nested case-control study design was used to investigate the relationship between radiation exposure and brain cancer risk in the United States Air Force (USAF). The cohort consisted of approximately 880,000 men with at least 1 year of service between 1970 and 1989. Two hundred and thirty cases were identified from hospital discharge records with a diagnosis of primary malignant brain tumor (International Classification of Diseases, 9th revision, code 191). Four controls were exactly matched with each case on year of age and race using incidence density sampling. Potential career summary extremely low frequency (ELF) and microwave-radiofrequency (MWRF) radiation exposures were based upon the duration in each occupation and an intensity score assigned by an expert panel. Ionizing radiation (IR) exposures were obtained from personal dosimetry records.^ Relative to the unexposed, the overall age-race adjusted odds ratio (OR) for ELF exposure was 1.39, 95 percent confidence interval (CI) 1.03-1.88. A dose-response was not evident. The same was true for MWRF, although the OR = 1.59, with 95 percent CI 1.18-2.16. Excess risk was not found for IR exposure (OR = 0.66, 45 percent CI 0.26-1.72).^ Increasing socioeconomic status (SES), as identified by military pay grade, was associated with elevated brain tumor risk (officer vs. enlisted personnel age-race adjusted OR = 2.11, 95 percent CI 1.98-3.01, and senior officers vs. all others age-race adjusted OR = 3.30, 95 percent CI 2.0-5.46). SES proved to be an important confounder of the brain tumor risk associated with ELF and MWRF exposure. For ELF, the age-race-SES adjusted OR = 1.28, 95 percent CI 0.94-1.74, and for MWRF, the age-race-SES adjusted OR = 1.39, 95 percent CI 1.01-1.90.^ These results indicate that employment in Air Force occupations with potential electromagnetic field exposures is weakly, though not significantly, associated with increased risk for brain tumors. SES appeared to be the most consistent brain tumor risk factor in the USAF cohort. Other investigators have suggested that an association between brain tumor risk and SES may arise from differential access to medical care. However, in the USAF cohort health care is universally available. This study suggests that some factor other than access to medical care must underlie the association between SES and brain tumor risk. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This cross-sectional study is based on the qualitative and quantitative research design to review health policy decisions, their practice and implications during 2009 H1N1 influenza pandemic in the United States and globally. The “Future Pandemic Influenza Control (FPIC) related Strategic Management Plan” was developed based on the incorporation of the “National Strategy for Pandemic Influenza (2005)” for the United States from the U.S. Homeland Security Council and “The Canadian Pandemic Influenza Plan for the Health Sector (2006)” from the Canadian Pandemic Influenza Committee for use by the public health agencies in the United States as well as globally. The “global influenza experts’ survey” was primarily designed and administered via email through the “Survey Monkey” system to the 2009 H1N1 influenza pandemic experts as the study respondents. The effectiveness of this plan was confirmed and the approach of the study questionnaire was validated to be convenient and the excellent quality of the questions provided an efficient opportunity to the study respondents to evaluate the effectiveness of predefined strategies/interventions for future pandemic influenza control.^ The quantitative analysis of the responses to the Likert-scale based questions in the survey about predefined strategies/interventions, addressing five strategic issues to control future pandemic influenza. The effectiveness of strategies defined as pertinent interventions in this plan was evaluated by targeting five strategic issues regarding pandemic influenza control. For the first strategic issue pertaining influenza prevention and pre pandemic planning; the confirmed effectiveness (agreement) for strategy (1a) 87.5%, strategy (1b) 91.7% and strategy (1c) 83.3%. The assessment of the priority level for strategies to address the strategic issue no. (1); (1b (High Priority) > 1a (Medium Priority) > 1c (Low Priority) based on the available resources of the developing and developed countries. For the second Strategic Issue encompassing the preparedness and communication regarding pandemic influenza control; the confirmed effectiveness (agreement) for the strategy (2a) 95.6%, strategy (2b) 82.6%, strategy (2c) 91.3% and Strategy (2d) 87.0%. The assessment of the priority level for these strategies to address the strategic issue no. (2); (2a (highest priority) > 2c (high priority) >2d (medium priority) > 2b (low priority). For the third strategic issue encompassing the surveillance and detection of pandemic influenza; the confirmed effectiveness (agreement) for the strategy (3a) 90.9% and strategy (3b) 77.3%. The assessment of the priority level for theses strategies to address the strategic Issue No. (3) (3a (high priority) > 3b (medium/low priority). For the fourth strategic issue pertaining the response and containment of pandemic influenza; the confirmed effectiveness (agreement) for the strategy (4a) 63.6%, strategy (4b) 81.8%, strategy (4c) 86.3%, and strategy (4d) 86.4%. The assessment of the priority level for these strategies to address the strategic issue no. (4); (4d (highest priority) > 4c (high priority) > 4b (medium priority) > 4a (low priority). The fifth strategic issue about recovery from influenza and post pandemic planning; the confirmed effectiveness (agreement) for the strategy (5a) 68.2%, strategy (5b) 36.3% and strategy (5c) 40.9%. The assessment of the priority level for strategies to address the strategic issue no. (5); (5a (high priority) > 5c (medium priority) > 5b (low priority).^ The qualitative analysis of responses to the open-ended questions in the study questionnaire was performed by means of thematic content analysis. The following recurrent or common “themes” were determined for the future implementation of various predefined strategies to address five strategic issues from the “FPIC related Strategic Management Plan” to control future influenza pandemics. (1) Pre Pandemic Influenza Prevention, (2) Seasonal Influenza Control, (3) Cost Effectiveness of Non Pharmaceutical Interventions (NPI), (4) Raising Global Public Awareness, (5) Global Influenza Vaccination Campaigns, (6)Priority for High Risk Population, (7) Prompt Accessibility and Distribution of Influenza Vaccines and Antiviral Drugs, (8) The Vital Role of Private Sector, (9) School Based Influenza Containment, (10) Efficient Global Risk Communication, (11) Global Research Collaboration, (12) The Critical Role of Global Public Health Organizations, (13) Global Syndromic Surveillance and Surge Capacity and (14) Post Pandemic Recovery and Lessons Learned. The future implementation of these strategies with confirmed effectiveness to primarily “reduce the overall response time’ in the process of ‘early detection’, ‘strategies (interventions) formulation’ and their ‘implementation’ to eventually ensure the following health outcomes: (a) reduced influenza transmission, (b) prompt and effective influenza treatment and control, (c) reduced influenza related morbidity and mortality.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deregulation of kinase activity is one example of how cells become cancerous by evading evolutionary constraints. The Tousled kinase (Tsl) was initially identified in Arabidopsis thaliana as a developmentally important kinase. There are two mammalian orthologues of Tsl and one orthologue in C. elegans, TLK-1, which is essential for embryonic viability and germ cell development. Depletion of TLK-1 leads to embryonic arrest large, distended nuclei, and ultimately embryonic lethality. Prior to terminal arrest, TLK-1-depleted embryos undergo aberrant mitoses characterized by poor metaphase chromosome alignment, delayed mitotic progression, lagging chromosomes, and supernumerary centrosomes. I discovered an unanticipated requirement for TLK-1 in mitotic spindle assembly and positioning. Normally, in the newly-fertilized zygote (P0) the maternal pronucleus migrates toward the paternal pronucleus at the posterior end of the embryo. After pronuclear meeting, the pronuclear-centrosome complex rotates 90° during centration to align on the anteroposterior axis followed by nuclear envelope breakdown (NEBD). However, in TLK-1-depleted P0 embryos, the centrosome-pronuclear complex rotation is significantly delayed with respect to NEBD and chromosome congression, Additionally, centrosome positions over time in tlk-1(RNAi) early embryos revealed a defect in posterior centrosome positioning during spindle-pronuclear centration, and 4D analysis of centrosome positions and movement in newly fertilized embryos showed aberrant centrosome dynamics in TLK-1-depleted embryos. Several mechanisms contribute to spindle rotation, one of which is the anchoring of astral microtubules to the cell cortex. Attachment of these microtubules to the cortices is thought to confer the necessary stability and forces in order to rotate the centrosome-pronuclear complex in a timely fashion. Analysis of a microtubule end-binding protein revealed that TLK-1-depleted embryos exhibit a more stochastic distribution of microtubule growth toward the cell cortices, and the types of microtubule attachments appear to differ from wild-type embryos. Additionally, fewer astral microtubules are in the vicinity of the cell cortex, thus suggesting that the delayed spindle rotation could be in part due to a lack of appropriate microtubule attachments to the cell cortex. Together with recently published biochemical data revealing the Tousled-like kinases associate with components of the dynein microtubule motor complex in humans, these data suggest that Tousled-like kinases play an important role in mitotic spindle assembly and positioning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Radiological Physics Center (RPC) uses both on-site and remote reviews to credential institutions for participation in clinical trials. Anthropomorphic quality assurance (QA) phantoms are one tool the RPC uses to remotely audit institutions, which include thermoluminescent dosimeters (TLDs) and radiochromic film. The RPC desires to switch from TLD as the absolute dosimeter in the phantoms, to optically stimulated luminescent dosimeters (OSLDs), but a problem lies in the angular dependence exhibited by the OSLD. The purpose of this study was to characterize the angular dependence of OSLD and establish a correction factor if necessary, to provide accurate dosimetric measurements as a replacement for TLD in the QA phantoms. A 10 cm diameter high-impact polystyrene spherical phantom was designed and constructed to hold an OSLD to study the angular response of the dosimeter under the simplest of circumstances for both coplanar and non-coplanar treatment deliveries. OSLD were irradiated in the spherical phantom, and the responses of the dosimeter from edge-on angles were normalized to the response when irradiated with the beam incident normally on the surface of the dosimeter. The average normalized response was used to establish an angular correction factor for 6 MV and 18 coplanar treatments, and for 6 MV non-coplanar treatments specific to CyberKnife. The RPC pelvic phantom dosimetry insert was modified to hold OSLD, in addition to the TLD, adjacent to the planes of film. Treatment plans of increasing angular beam delivery were developed, three in Pinnacle v9.0 (4-field box, IMRT, and VMAT) and one in Accuray’s MultiPlan v3.5.3 (CyberKnife). The plans were delivered to the pelvic phantom containing both TLD and OSLD in the target volume. The pelvic phantom was also sent to two institutions to be irradiated as trials, one delivering IMRT, and the other a CyberKnife treatment. For the IMRT deliveries and the two institution trials, the phantom also included film in the sagittal and coronal planes. The doses measured from the TLD and OSLD were calculated for each irradiation, and the angular correction factors established from the spherical phantom irradiations were applied to the OSLD dose. The ratio of the TLD dose to the angular corrected OSLD dose was calculated for each irradiation. The corrected OSLD dose was found to be within 1% of the TLD measured dose for all irradiations, with the exception of the in-house CyberKnife deliveries. The films were normalized to both TLD measured dose and the corrected OSLD dose. Dose profiles were obtained and gamma analysis was performed using a 7%/4 mm criteria, to compare the ability of the OSLD, when corrected for the angular dependence, to provide equivalent results to TLD. The results of this study indicate that the OSLD can effectively be used as a replacement for TLD in the RPC’s anthropomorphic QA phantoms for coplanar treatment deliveries when a correction is applied for the dosimeter’s angular dependence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of respiratory motion on patient anatomy poses a challenge to accurate radiation therapy, especially in lung cancer treatment. Modern radiation therapy planning uses models of tumor respiratory motion to account for target motion in targeting. The tumor motion model can be verified on a per-treatment session basis with four-dimensional cone-beam computed tomography (4D-CBCT), which acquires an image set of the dynamic target throughout the respiratory cycle during the therapy session. 4D-CBCT is undersampled if the scan time is too short. However, short scan time is desirable in clinical practice to reduce patient setup time. This dissertation presents the design and optimization of 4D-CBCT to reduce the impact of undersampling artifacts with short scan times. This work measures the impact of undersampling artifacts on the accuracy of target motion measurement under different sampling conditions and for various object sizes and motions. The results provide a minimum scan time such that the target tracking error is less than a specified tolerance. This work also presents new image reconstruction algorithms for reducing undersampling artifacts in undersampled datasets by taking advantage of the assumption that the relevant motion of interest is contained within a volume-of-interest (VOI). It is shown that the VOI-based reconstruction provides more accurate image intensity than standard reconstruction. The VOI-based reconstruction produced 43% fewer least-squares error inside the VOI and 84% fewer error throughout the image in a study designed to simulate target motion. The VOI-based reconstruction approach can reduce acquisition time and improve image quality in 4D-CBCT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This project assessed the effectiveness of polymer gel dosimeters as tools for measuring the dose deposited by and LET of a proton beam. A total of three BANG® dosimeter formulations were evaluated: BANG®-3-Pro-2 BANGkits™ for dose measurement and two BANG®-3 variants, the LET-Baseline and LET-Meter dosimeters, for LET measurement. All dosimeters were read out using an OCT scanner. The basic characteristics of the BANGkits™ were assessed in a series of photon and electron irradiations. The dose-response relationship was found to be sigmoidal with a threshold for response of approximately 15 cGy. The active region of the dosimeter, the volume in which dosimeter response is not inhibited by oxygen, was found to make up roughly one fourth of the total dosimeter volume. Delivering a dose across multiple fractions was found to yield a greater response than delivering the same dose in a single irradiation. The dosimeter was found to accurately measure a dose distribution produced by overlapping photon fields, yielding gamma pass rates of 95.4% and 93.1% from two planar gamma analyses. Proton irradiations were performed for measurements of proton dose and LET. Initial irradiations performed through the side of a dosimeter led to OCT artifacts. Gamma pass rates of 85.7% and 89.9% were observed in two planar gamma analyses. In irradiations performed through the base of a dosimeter, gel response was found to increase with height in the dosimeter, even in areas of constant dose. After a correction was applied, gamma pass rates of 94.6% and 99.3% were observed in two planar gamma analyses. Absolute dose measurements were substantially higher (33%-100%) than the delivered doses for proton irradiations. Issues encountered while calibrating the LET-Meter gel restricted analysis of the LET measurement data to the SOBP of a proton beam. LET-Meter overresponse was found to increase linearly with track-average LET across the LET range that could be investigated (1.5 keV/micron – 3.5 keV/micron).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Radiomics is the high-throughput extraction and analysis of quantitative image features. For non-small cell lung cancer (NSCLC) patients, radiomics can be applied to standard of care computed tomography (CT) images to improve tumor diagnosis, staging, and response assessment. The first objective of this work was to show that CT image features extracted from pre-treatment NSCLC tumors could be used to predict tumor shrinkage in response to therapy. This is important since tumor shrinkage is an important cancer treatment endpoint that is correlated with probability of disease progression and overall survival. Accurate prediction of tumor shrinkage could also lead to individually customized treatment plans. To accomplish this objective, 64 stage NSCLC patients with similar treatments were all imaged using the same CT scanner and protocol. Quantitative image features were extracted and principal component regression with simulated annealing subset selection was used to predict shrinkage. Cross validation and permutation tests were used to validate the results. The optimal model gave a strong correlation between the observed and predicted shrinkages with . The second objective of this work was to identify sets of NSCLC CT image features that are reproducible, non-redundant, and informative across multiple machines. Feature sets with these qualities are needed for NSCLC radiomics models to be robust to machine variation and spurious correlation. To accomplish this objective, test-retest CT image pairs were obtained from 56 NSCLC patients imaged on three CT machines from two institutions. For each machine, quantitative image features with concordance correlation coefficient values greater than 0.90 were considered reproducible. Multi-machine reproducible feature sets were created by taking the intersection of individual machine reproducible feature sets. Redundant features were removed through hierarchical clustering. The findings showed that image feature reproducibility and redundancy depended on both the CT machine and the CT image type (average cine 4D-CT imaging vs. end-exhale cine 4D-CT imaging vs. helical inspiratory breath-hold 3D CT). For each image type, a set of cross-machine reproducible, non-redundant, and informative image features was identified. Compared to end-exhale 4D-CT and breath-hold 3D-CT, average 4D-CT derived image features showed superior multi-machine reproducibility and are the best candidates for clinical correlation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DEVELOPMENT AND IMPLEMENTATION OF A DYNAMIC HETEROGENEOUS PROTON EQUIVALENT ANTHROPOMORPHIC THORAX PHANTOM FOR THE ASSESSMENT OF SCANNED PROTON BEAM THERAPY by James Leroy Neihart, B.S. APPROVED: ______________________________David Followill, Ph.D. ______________________________Peter Balter, Ph.D. ______________________________Narayan Sahoo, Ph.D. ______________________________Kenneth Hess, Ph.D. ______________________________Paige Summers, M.S. APPROVED: ____________________________ Dean, The University of Texas Graduate School of Biomedical Sciences at Houston DEVELOPMENT AND IMPLEMENTATION OF A DYNAMIC HETEROGENEOUS PROTON EQUIVALENT ANTHROPOMORPHIC THORAX PHANTOM FOR THE ASSESSMENT OF SCANNED PROTON BEAM THERAPY A THESIS Presented to the Faculty of The University of Texas Health Science Center at Houston andThe University of TexasMD Anderson Cancer CenterGraduate School of Biomedical Sciences in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE by James Leroy Neihart, B.S. Houston, Texas Date of Graduation August, 2013 Acknowledgments I would like to acknowledge my advisory committee members, chair David Followill, Ph.D., Peter Balter, Ph.D, Narayan Sahoo, Ph.D., Kenneth Hess, Ph.D., Paige Summers M.S. and, for their time and effort contributed to this project. I would additionally like to thank the faculty and staff at the PTC-H and the RPC who assisted in many aspects of this project. Falk Pӧnisch, Ph.D. for his breath hold proton therapy treatment expertise, Matt Palmer and Jaques Bluett for proton dosimetry assistance, Matt Kerr for verification plan assistance, Carrie Amador, Nadia Hernandez, Trang Nguyen, Andrea Molineu, Lynda McDonald for TLD and film dosimetry assistance. Finally, I would like to thank my wife and family for their support and encouragement during my research and studies. Development and implementation of a dynamic heterogeneous proton equivalent anthropomorphic thorax phantom for the assessment of scanned proton beam therapy By: James Leroy Neihart, B.S. Chair of Advisory Committee: David Followill, Ph.D Proton therapy has been gaining ground recently in radiation oncology. To date, the most successful utilization of proton therapy is in head and neck cases as well as prostate cases. These tumor locations do not suffer from the resulting difficulties of treatment delivery as a result of respiratory motion. Lung tumors require either breath hold or motion tracking, neither of which have been assessed with an end-to-end phantom for proton treatments. Currently, the RPC does not have a dynamic thoracic phantom for proton therapy procedure assessment. Additionally, such a phantom could be an excellent means of assessing quality assurance of the procedures of proton therapy centers wishing to participate in clinical trials. An eventual goal of this phantom is to have a means of evaluating and auditing institutions for the ability to start clinical trials utilizing proton therapy procedures for lung cancers. Therefore, the hypothesis of this study is that a dynamic anthropomorphic thoracic phantom can be created to evaluate end-to-end proton therapy treatment procedures for lung cancer to assure agreement between the measured and calculated dose within 5% / 5 mm with a reproducibility of 2%. Multiple materials were assessed for thoracic heterogeneity equivalency. The phantom was designed from the materials found to be in greatest agreement. The phantom was treated in an end-to-end treatment four times, which included simulation, treatment planning and treatment delivery. Each treatment plan was delivered three times to assess reproducibility. The dose measured within the phantom was compared to that of the treatment plan. The hypothesis was fully supported for three of the treatment plans, but failed the reproducibility requirement for the most aggressive treatment plan.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To ensure the integrity of an intensity modulated radiation therapy (IMRT) treatment, each plan must be validated through a measurement-based quality assurance (QA) procedure, known as patient specific IMRT QA. Many methods of measurement and analysis have evolved for this QA. There is not a standard among clinical institutions, and many devices and action levels are used. Since the acceptance criteria determines if the dosimetric tools’ output passes the patient plan, it is important to see how these parameters influence the performance of the QA device. While analyzing the results of IMRT QA, it is important to understand the variability in the measurements. Due to the different form factors of the many QA methods, this reproducibility can be device dependent. These questions of patient-specific IMRT QA reproducibility and performance were investigated across five dosimeter systems: a helical diode array, radiographic film, ion chamber, diode array (AP field-by-field, AP composite, and rotational composite), and an in-house designed multiple ion chamber phantom. The reproducibility was gauged for each device by comparing the coefficients of variation (CV) across six patient plans. The performance of each device was determined by comparing each one’s ability to accurately label a plan as acceptable or unacceptable compared to a gold standard. All methods demonstrated a CV of less than 4%. Film proved to have the highest variability in QA measurement, likely due to the high level of user involvement in the readout and analysis. This is further shown by how the setup contributed more variation than the readout and analysis for all of the methods, except film. When evaluated for ability to correctly label acceptable and unacceptable plans, two distinct performance groups emerged with the helical diode array, AP composite diode array, film, and ion chamber in the better group; and the rotational composite and AP field-by-field diode array in the poorer group. Additionally, optimal threshold cutoffs were determined for each of the dosimetry systems. These findings, combined with practical considerations for factors such as labor and cost, can aid a clinic in its choice of an effective and safe patient-specific IMRT QA implementation.